Vista de Lectura

Hay nuevos artículos disponibles. Pincha para refrescar la página.

Proxxon CNC Conversion Makes a Small Mill a Bit Bigger

The Proxxon MF70 mini-mill is a cheap and cheerful, but decently made little desktop mill. As such, it’s been the target of innumerable CNC-ification projects, including an official kit from the manufacturer. But that didn’t stop [Dheera Venkatraman] from sharing his Big Yellow take on this venerable pursuit with us!

This isn’t simply a CNC modification, it’s a wholly 3D-printed CNC modification, which means that you don’t already need a mill to make the usual aluminum pieces to upgrade your mill. And perhaps the standout feature: [Dheera]’s mod basically doubles the Y-axis travel and adds an extra 15 mm of headroom to the Z. If you wanted to stop here, you would have a bigger small manual mill, but as long as you’re at it, you should probably bolt on the steppers and go CNC. It’s your call, because both models are included.

[Dheera] also built a nice enclosure for the MF70, which makes sense because it’s small enough that it could fit on your desktop, and you don’t want it flinging brass chips all over your bench. But as long as it’s on your desk, why not consider a soundproof enclosure for the MF70? Or take the next step, make a nice wooden box, mount a monitor in it, and take the MF70 entirely portable, like this gonzo hack from way back in 2012.

Better Living Through Hackery

Hackaday’s own [Arya Voronova] has been on a multi-year kick to make technology more personal by making it herself, and has just now started writing about it. Her main point rings especially true in this day and age, where a lot of the tech devices we could use to help us are instead used to spy on us or are designed to literally make us addicted to their services.

The project is at the same time impossible and simple. Of course, you are not going to be able to build a gadget that will bolster all of your (perceived or otherwise) personal weaknesses in one fell swoop. But what if you start looking at them one at a time? What if you start building up the good habits with the help of a fun DIY project?

That’s where [Arya]’s plan might just be brilliant. Because each project is supposed to be small, it forces you to focus on one specific problem, rather than getting demoralized at the impossibility of becoming “better” in some vague overall sense. Any psychologist would tell you that introspection and dividing up complex problems are the first steps. And what motivates a hacker to take the next steps? You got it, the fun of brainstorming, planning, and building a nice concrete DIY project. It’s like the ultimate motivation, Hackaday style.

And DIY solutions are a perfect match to personal problems. Nothing is so customizable as what you design and build yourself from the ground up. DIY means making exactly what you need, or at least what you think you need. Iteration, improvement, and the usual prototyping cycle applied to personal growth sounds like the ideal combo, because that’s how the tech works, and that’s also how humans work. Of course, even the coolest DIY gadget can’t instantly make you more mindful, for instance, but if it’s a tool that helps you get there, I don’t think you could ask for more.

This article is part of the Hackaday.com newsletter, delivered every seven days for each of the last 200+ weeks. It also includes our favorite articles from the last seven days that you can see on the web version of the newsletter. Want this type of article to hit your inbox every Friday morning? You should sign up!

Tulip is a Micropython Synth Workstation, in an ESP32

We’re not sure exactly what Tulip is, because it’s so many things all at once. It’s a music-making environment that’s programmable in Python, runs on your big computer or on an ESP32-S3, and comes complete with some nice sounding synth engines, a sequencer, and a drum machine all built in. It’s like your dream late-1980s synthesizer workstation, but running on a dev board that you can get for a song.

And because Tulip is made of open-source software and hardware, you can extend the heck out of it. For instance, as demonstrated in this video by [Floyd Steinberg], you can turn it into a fully contained portable device by adding a touchscreen. That incarnation is available from Makerfabs, and it’s a bargain, especially considering that the developer [Brian Whitman] gets some of the proceeds. Or, because it’s written in portable Python, you can run it on your desktop computer for free.

The most interesting part of Tulip for us, as programmer-musicians, is that it boots up into a Micrypython REPL. This is a synth workstation with a command-line prompt as its primary interface. It has an always-running main loop, and you make music by writing functions that register as callbacks with the main loop. If you were fast, you could probably live-code up something pretty interesting. Or maybe it wants to be extended into a physical musical instrument by taking in triggers from the ESP32’s GPIOs? Oh, and did we mention it sends MIDI out just as happily as it takes it in? What can’t Tulip do?

We’ve seen some pretty neat minimalist music-making devices lately, but in a sense Tulip takes the cake: it’s essentially almost entirely software. The various hardware incarnations are just possibilities, and because it’s all open and extremely portable, you can freely choose among them. We really like the design and sound of the AMY software synthesizer engine that powers the Tulip, and we’re sure that more synthesizer models will be written for it. This is a music project that you want to keep your eyes on in the future.

How About Privacy and Hackability?

Many smart electric meters in the US use the 900 MHz band to broadcast their usage out to meter readers as they walk the neighborhood. [Jeff Sandberg] used an RTL-SDR dongle and some software to integrate this data into his own home automation system, which lets him keep track of his home’s power usage.

Half of the comment section was appalled that the meters broadcast this data in the clear, and these readers thought this data should be encrypted even if the reach is limited to the home-owner’s front yard. But that would have stopped [Jeff] from accessing his own data as well, and that would be a shame. So there’s clearly a tradeoff in play here.

We see this tradeoff in a lot of hardware devices as well – we want to be able to run our firmware on them, but we don’t want criminals to do the same. We want the smart device to work with the cloud service, but to also work with our own home automation system if we have one. And we want to be able to listen in to our smart meters, but don’t necessarily want others to do so.

The solution here is as easy as it is implausible that it will get implemented. If the smart meters transmitted encrypted, each with their own individual password, then everyone would win. The meter reader would have a database of passwords linked to meter serial numbers or addresses, and the home owner could just read it off of a sticker, optimally placed on each unit. Privacy and usability would be preserved.

This issue isn’t just limited to electric meters. Indeed, think of all of the data that is being sent out from or about you, and what percentage of it is not encrypted and should be, but also about what data is sent out encrypted that you could use access to. The solution is to put you in control of the encryption, by selecting a password or having access to one that’s set for you. Because after all, if it’s your data, it should be your data: private and usable.

This article is part of the Hackaday.com newsletter, delivered every seven days for each of the last 200+ weeks. It also includes our favorite articles from the last seven days that you can see on the web version of the newsletter. Want this type of article to hit your inbox every Friday morning? You should sign up!

Need Many Thin Parts? Try Multi-material Stack Printing

Admittedly it’s a bit of a niche application, but if you need lots of flat 3D printed objects, one way to go about it is to print them in a stack and separate them somehow. An old(er) solution is to use a non-extruding “ironing” step between each layer, which makes them easier to pull apart. But another trick is to use the fact that PLA and PETG don’t stick well to each other to your advantage. And thus is born multi-material stack printing. (Video, embedded below the break.)

[Jonathan] wants to print out multiples of his fun Multiboard mounting system backplates, and these are the ideal candidate for stack printing: they’re thin, but otherwise take up the entire build plate. As you’d expect, the main trick is to print thin layers of PETG between the PLA plate layers that you do want. He demonstrates that you can then simply pull them apart.

There are some tricks, though. First is to make two pillars in addition to the plates, which apparently convinces the slicer to not flatten all the layers together. (We don’t really understand why, honestly, but we don’t use Bambu slicer for multi-materials.) The other trick that we expect to be more widely applicable, is that [Jonathan] extrudes the PETG interlayers a little thicker than normally. Because the PETG overflows the lower PLA layer, it physically locks on even though it chemically doesn’t. This probably requires some experimentation.

As multi-material printers get cheaper, we’ve seen a lot more innovative uses for them popping up. And we wouldn’t be so stoked about the topic if there weren’t a variety of hacker projects to make it possible. Most recently, the impressive system from [Armored_Turtle] has caught our eye. Who knows what kind of crazy applications we’ll see in the future? Are you doing multi-material yet?

Hacker Olympics

The opening ceremony of the Summer Olympics is going on today. It’s an over-the-top presentation meant to draw people into sport. And for the next few weeks, we’ll be seeing people from all across the world competing in their chosen physical activities. There will be triumph and defeat, front-runners who nonetheless lag behind on that day, and underdogs who sneak ahead. In short, a lot of ado about sport, and I don’t necessarily think that’s a bad thing. Sports are fun.

But where is the Hacker Olympics? Or even more broadly the Science Olympics or Engineering Olympics? Why don’t we celebrate the achievements of great thinkers, planners, and builders the same way that we celebrate fast runners or steady shooters? With all the pomp and showmanship and so on?

Here at Hackaday, we try our best! When we see a cool hack, we celebrate it. But we’re one little blog, with about a millionth the budget of the International Olympic Commission. However, we have you all as our biggest multiplier. It would be awesome if we could take over the entire city of Paris in celebration of science and engineering, but until then, if you see something smart, share it with us. And if you see something on Hackaday that you think was awesome, share it with your friends.

This article is part of the Hackaday.com newsletter, delivered every seven days for each of the last 200+ weeks. It also includes our favorite articles from the last seven days that you can see on the web version of the newsletter. Want this type of article to hit your inbox every Friday morning? You should sign up!

CeraMetal Lets You Print Metal, Cheaply and Easily

3D printing metal has been somewhat of a holy grail for the last decade in the hobby 3DP scene. We’ve seen a number of solutions, including using expensive filaments that incorporate metal into the usual plastic. In parallel, we’ve seen ceramic printers, and paste printers in general, coming into their own. What if you combined the two?

You’d get [Leah Buechly] et al’s CeraMetal process, which is the cheapest and most straightforward metal printing method we’ve seen to date. It all starts off with a custom bronze metal clay, made up of 100 g bronze powder, 0.17 g methyl cellulose, 0.33 g xanthan gum, and 9 g water. The water is fine-tuned to get the right consistency, and then it’s extruded and sintered.

The printer in question is an off-the-shelf ceramic printer that appears to use a pressurized clay feed into an augur, and prints on a linen bed. [Leah] had to write a custom slicer firmware that essentially runs in vase mode but incorporates infill as well, because the stop-start of normal slicers wreaked havoc with clay printing.

The part is then buried in activated carbon for support, and fired in a kiln. The result is a 3D printed bronze part on the cheap; the material cost is essentially just the cost of the metal powder and your effort.

We had never heard of metal clay before, but apparently jewelers have been using it for metals other than just bronze. The Metal Clay Academy, from the references section of the paper, is an amazing resource if you want to recreate this at home.

Paste printers are sounding more and more interesting. Obvious applications include printing chocolate and printing pancakes, but now that we’re talking metal parts with reasonably consistent shrinkage, they’ve got our attention.

Do Your Research

We were talking about a sweet hack this week, wherein [Alex] busts the encryption for his IP web cam firmware so that he can modify it later. He got a number of lucky breaks, including getting root on the device just by soldering on a serial terminal, but was faced with having to reverse-engineer a binary that implemented RSA encryption and decryption.

Especially when they’re done right, and written to avoid side-channel attacks, encryption routines aren’t intuitive, even when you’re looking at the C source. Reversing it from the binary would be a tremendous hurdle.

That’s when [Alex] started plugging in strings he found in the binary into a search engine. And that’s when he found exactly the open source project that the webcam used, which gave him the understanding he needed to crack the rest of the nut.

Never forget! When you’re doing some reverse engineering, whether hardware or software, do a search for every part number and every string you find in memory. If you’re like me, it might feel like cheating a little bit, but it’s just being efficient. It’s what all your hacker heroes say they do, and if you’re lucky, it might just be the break you need too.

It’s Not Unsual to Love Hacking

Most of what we do here at Hackaday is look out for cool projects and then write them up so that you all know about them. Nothing is better than being really stoked about a clever hack and then being able to share it with tens of thousands of like-minded folks. Sure, it’s our job, but we really do it because we love to share. And it’s clear that you all do too! After all, we write up the hacks that you document for us.

We recently featured a hack where the guy who did the work in question said that he didn’t think it was “worthy of Hackaday”. (Of course, it was!) And I don’t like that sentiment at all, honestly, because a hack that you enjoyed doing is a hack worth sharing, even if just for sharing the joy of doing it, and that came across fully.

Of course we gladly feature the ultra-bravado hacks where the nearly impossible is made real. But there’s equal value in the simple hacks that inspire others to pursue one odd path or another. Or even pieces where there’s no hack involved, but simply the sharing of something cool.

This week, [Arya Voronova] wrote a piece about her experience using MicroPython on embedded devices, and it apparently resonated with a lot of our readers. It’s not a deep-dive into MicroPython, or a mind-bending abuse of the language. Instead, it’s a simple “this is what I love about doing things this way”, and that’s a great perspective that often gets lost when we get deep in the technical weeds.

I had the same realization a few months back at Hackaday Europe. In the lightning talks, most everyone gave talks about cool projects that they are working on, and they’re absolutely worth watching for that. [Jaap Meijers] gave a wonderful talk about making animated QR codes, but it wasn’t about how he invented animated QR codes, because he was just using someone else’s project. Instead, it was about how neat he thought someone else’s work was, and how he really wanted to share it with us. (And now you know too.)

Epic hacks are fantastic, no question. But the simple expression of the love of hacking, whether in words or in the doing, is equally important. Show us your work, but don’t forget to show us your joy along the way.

This article is part of the Hackaday.com newsletter, delivered every seven days for each of the last 200+ weeks. It also includes our favorite articles from the last seven days that you can see on the web version of the newsletter. Want this type of article to hit your inbox every Friday morning? You should sign up!

Repeatable “One-Click” Fusion, From Your Cellphone

Sometimes you spend so much time building and operating your nuclear fusor that you neglect the creature comforts, like a simple fusion control profile or a cellphone app to remote control the whole setup. No worries, [Nate Sales] has your back with his openreactor project, your one-click fusion solution!

An inertial electrostatic confinement (IEC) fusor is perhaps the easiest type of fusion for the home gamer, but that’s not the same thing as saying that building and running one is easy. It requires high vacuum, high voltage, and the controlled introduction of deuterium into the chamber. And because it’s real-deal fusion, it’s giving off neutrons, which means that you don’t want to be standing on the wrong side of the lead shielding. This is where remote control is paramount.

While this isn’t an automation problem that many people will be having, to put it lightly, it’s awesome that [Nate] shared his solution with us all. Sure, if you’re running a different turbo pump or flow controller, you might have some hacking to do, but at least you’ve got a start. And if you’re simply curious about fusion on a hobby scale, his repo is full of interesting details, from the inside.

And while this sounds far out, fusion at home is surprisingly attainable. Heck, if a 12-year old or even a YouTuber can do it, so can you! And now the software shouldn’t stand in your way.

Thanks [Anon] for the tip!

Halfway Between Inspiration and Engineering

We see a lot of hacks where the path to success is pretty obvious, if maybe strewn with all sorts of complications, land-mines, and time-sinks. Then we get other hacks that are just totally out-of-the-box. Maybe the work itself isn’t so impressive, or even “correct” by engineering standards, but the inner idea that’s so crazy it just might work shines through.

This week, for instance, we saw an adaptive backlight LED TV modification that no engineer would ever design. Whether it was just the easiest way out, or used up parts on hand, [Mousa] cracked the problem of assigning brightnesses to the LED backlights by taking a tiny screen, playing the same movie on it, pointing it at an array of light sensors, and driving the LEDs inside his big TV off of that. No image processing, no computation, just light hitting LDRs. It’s mad, and it involves many, many wires, but it gets the job done.

Similarly, we saw an answer to the wet-3D-filament problem that’s as simple as it could possibly be: basically a tube with heated, dry air running through it that the filament must pass through on it’s way to the hot end. We’ve seen plenty of engineered solutions to damp filament, ranging from an ounce of prevention in the form of various desiccant storage options, to a pound of cure – putting the spools in the oven to bake out. We’re sure that drying filament inline isn’t the right way to do it, but we’re glad to see it work. The idea is there when you need it.

Not that there’s anything wrong with the engineering mindset. Quite the contrary: most often taking things one reasonable step at a time, quantifying up all the unknowns, and thinking through the path of least resistance gets you to the finish line of your project faster. But we still have to admire the off-the-wall hacks, where the way that makes the most sense isn’t always the most beautiful way to go. It’s a good week on Hackaday when we get both types of projects in even doses.

This article is part of the Hackaday.com newsletter, delivered every seven days for each of the last 200+ weeks. It also includes our favorite articles from the last seven days that you can see on the web version of the newsletter. Want this type of article to hit your inbox every Friday morning? You should sign up!

Shapeways Files for Bankruptcy

One of the earliest hobbyist-friendly on-demand 3D printing and fabrication shops, Shapeways, is filing for bankruptcy. As these financial arrangements always go, this may or may not mean the end of the service, but it’s a sure sign that their business wasn’t running as well as you’d hope.

One of the standout features of Shapeways was always that they made metal printing affordable to the home gamer. Whether it was something frivolous like a custom gear-shifter knob, or something all-too functional like a prototype rocket engine, it was neat to have the alternative workflow of iterative design at home and then shipping out for manufacturing.

We don’t want to speculate too much, but we’d be surprised if the rise of similar services in China wasn’t part of the reason for the bankruptcy. The market landscape just isn’t what it was way back in 2013. (Sadly, the video linked in this article isn’t around any more. If anyone can find a copy, post up in the comments?) So while Shapeways may or may not be gone, it’s not like we can’t get metal parts made anymore.

Still, we’re spilling a little for the OG.

Thanks [Aaron Eiche] for the breaking news tip!

Danger is My Middle Name

Last week, [Al Williams] wrote up a his experience with a book that provided almost too much detailed information on how to build a DIY x-ray machine for his (then) young soul to bear. He almost had to build it! Where the “almost” is probably both a bummer because he didn’t have an x-ray machine as a kid, but also a great good because it was a super dangerous build, of a typical sort for the 1950s in which it was published.

Part of me really loves the matter-of-factness with which “A Boy’s First Book of Linear Accelerators” tells you how you (yes you!) can build a 500 kV van der Graff generator. But at the same time, modern me does find the lack of safety precautions in many of these mid-century books to be a little bit spooky. Contrast this with modern books where sometimes I get the feeling that the publisher’s legal team won’t let us read about folding paper airplanes for fear of getting cut.

A number of us have built dangerous projects in our lives, and many of us have gotten away with it. Part of the reason that many of us are still here is that we understood the dangers, but I would be lying if I said that I always fully understood them. But thinking about the dangers is still our first and best line of defense. Humility about how well you understand all of the dangers of a certain project is also very healthy – if you go into it keeping an eye out for the unknown unknowns, you’re in better shape.

Safety isn’t avoiding danger, but rather minimizing it. When we publish dangerous hacks, we really try to at least highlight the most important hazards so that you know what to look out for. And over the years, I’ve learned a ton of interesting safety tricks from the comments and fellow hackers alike. My ideal, then, is the spirit of the 1950s x-ray book, which encourages you to get the hack built, but modernized so that it tells you where the dangers lie and how to handle them. If you’re shooting electrons, shouldn’t the book also tell you how to stay out of the way?

This article is part of the Hackaday.com newsletter, delivered every seven days for each of the last 200+ weeks. It also includes our favorite articles from the last seven days that you can see on the web version of the newsletter. Want this type of article to hit your inbox every Friday morning? You should sign up!
❌