Vista de Lectura

Hay nuevos artículos disponibles. Pincha para refrescar la página.

All Aboard The Good Ship Benchy

We’ll go out on a limb here and say that a large portion of Hackaday readers are also boat-builders. That’s a bold statement, but as the term applies to anyone who has built a boat, we’d argue that it encompasses anyone who’s run off a Benchy, the popular 3D printer test model. Among all you newfound mariners, certainly a significant number must have looked at their Benchy and wondered what a full-sized one would be like. Those daydreams of being captain of your ship may not have been realized, but [Dr. D-Flo] has made them a reality for himself with what he claims is the world’s largest Benchy. It floats, and carries him down the waterways of Tennessee in style!

The video below is long but has all the details. The three sections of the boat were printed in PETG on a printer with a one cubic meter build volume, and a few liberties had to be taken with the design to ensure it can be used as a real boat. The infill gaps are filled with expanding foam to provide extra buoyancy, and an aluminium plate is attached to the bottom for strength. The keel meanwhile is a 3D printed sectional mold filled with concrete. The cabin is printed in PETG again, and with the addition of controls and a solar powered trolling motor, the vessel is ready to go. Let’s face it, we all want a try!

Ask Hackaday: How Much Would You Stake On An Online Retailer

On the bench where this is being written, there’s a Mitutoyo vernier caliper. It’s the base model with a proper vernier scale, but it’s beautifully made, and it’s enjoyable to see younger hardware hackers puzzle over how to use it. It cost about thirty British pounds a few years ago, but when it comes to quality metrology instruments that’s really cheap. The sky really is the limit for those in search of ultimate accuracy and precision. We can see then why this Redditor was upset when the $400 Mitutoyo they ordered from Amazon turned out to be nothing of the sort. We can’t even call it a fake, it’s just a very cheap instrument stuffed oddly, into a genuine Mitutoyo box.

Naturally we hope they received a refund, but it does raise the question when buying from large online retailers; how much are we prepared to risk? We buy plenty of stuff from AliExpress in out community, but in that case the slight element of chance which comes with random Chinese manufacture is offset by the low prices. Meanwhile the likes of Amazon have worked hard to establish themselves as trusted brands, but is that misplaced? They are after all simply clearing houses for third party products, and evidently have little care for what’s in the box. The £30 base model caliper mentioned above is an acceptable punt, but at what point should we go to a specialist and pay more for some confidence in the product?

It’s a question worth pondering as we hit the “Buy now” button without thinking. What’s your view? Let us know in the comments. Meanwhile, we can all be caught with our online purchases.

Thanks [JohnU] for the tip.

AI Not Needed For Hackaday Projects

It was Supercon this weekend, and Hackaday staffers made their way to Pasadena for what was by all accounts an excellent event. Now they’re all on their way home on red-eye flights and far from their benches, so spare a thought for the lonely editor holding the fort while they’ve been having fun. The supply of cool hacks for your entertainment must continue, so what’s to be done? Fortunately Hackaday writer [Anne Ogborn] has the answer, in the form of an automated Hackaday article generator.

We once had a commenter make a withering insult that one of our contributors’ writing styles looked like the work of an AI driven bot, a sentence that the writer in question treasures enough to have incorporated in their Hackaday email signature. [Anne] is a data scientist and Prolog programmer by trade so knows a bit about AI, and she has no need for such frippery. Instead she’s made a deck of cards each marked with a common theme among the work featured here, and generating new article titles is a simple case of drawing cards from the pack and assembling the resulting sentence.

The result is both amusing and we think, uncannily on the mark. Who wouldn’t want an ESP8266 powered cardboard drone? We think it will make a valuable addition to the Hackaday armoury, to be brought out on days such as the first of April, when there’s always an unexpected shortage of hacks. Video below the break.

Flaming Power Wheels Skeleton Wins Halloween

When the project description starts with the sentence “I use an RC remote and receiver, an esp32, high-current motor drivers, servos, an FPV camera, and a little propane”, you know that this is one which deserves a second look. And so [gearscodeandfire]’s Halloween project caught our eye. It’s a pink Power Wheels jeep driven by a skeletal rider, and the best part is that the whole thing is remote controlled down to a pan-and-tilt skull, a first-person video feed, and even real flames.

At its heart is an ESP32 with a set of motor controllers and relays to do the heavy lifting. The controller is a standard radio remote controller, and the first-person view is an analogue feed as you’d find on a drone. The skeleton is given a child-like appearance by discarding the original adult-proportioned plastic skull and replacing it with a much larger item. The thought that plastic Halloween skulls are available in a range of standard sizes and can be considered as a part in their own right is something we find amusing. The propane burner is supplied from a small cylinder via a solenoid valve, and ignited with the spark from a high-voltage transformer.

The result, we think, wins Halloween hands down. Twelve-foot skeletons are SO 2023!

The video is below the break.

 

 

 

https://hackaday.io/project/199110-ghost-toddler-esp32-fpv-pan-tilt-power-wheels

Humble Television Tubes Make An FM Regenerative Radio

The regenerative radio is long-ago superseded in commercial receivers, but it remains a common project for electronics or radio enthusiasts seeking to make a simple receiver. It’s most often seen for AM band receivers or perhaps shortwave ham band ones, but it’s a circuit which also works at much higher frequencies. [Perian Marcel] has done just this, with a regenerative receiver for the FM broadcast band.

The principle of a regenerative receiver is that it takes a tuned radio frequency receiver with a wide bandwidth and poor performance, and applies feedback to the point at which the circuit is almost but not quite oscillating. This has the effect of hugely increasing the “Q”, or quality factor of the receiver, giving it much more sensitivity and a narrow bandwidth. They’re tricky to tune but they can give reasonable performance, and they will happily slope-demodulate an FM transmission.

This one uses two tubes from consumer grade TV receivers, the “P” at the start of the part number being the giveaway for a 300mA series heater chain. The RF triode-pentode isn’t a radio part at all, instead it’s a mundane TV field oscillator part pushed into service at higher frequencies, while the other triode-pentode serves as an audio amplifier. The original circuit from which this one is adapted is available online, All in all it’s a neat project, and a reminder that exotic parts aren’t always necessary at higher frequencies. The video is below the break.

M.2 Makes An Unusual Microcontroller Form Factor

When we think of an m.2 slot in our laptop or similar, it’s usually in the context of its PCI connectivity for high-speed applications such as solid state disks. It’s a connector that offers much more than that interface though, making it suitable for some unexpected add-ons. As an example [MagicWolfi] has produced an m.2 card which contains the equivalent of a Raspberry Pi Pico.

The board itself has the familiar m.2 edge connector at the bottom, and the RP2040 GPIO lines as postage-stamp indentations round the edges. On the m.2 front is uses the USB interface as well as a UART and the I2C lines, as well as some of the interfaces we’re less familiar with such as ALERT, WAKE, DISABLE1/2, LED 1/2, and VENDOR_DEFINED.

On one level this provides a handy internal microcontroller card with which you can do all the things you’d expect from a Pi Pico, but on another it provides the fascinating possibility of the Pico performing a watchdog or other function for the host device. We would be genuinely interested to hear more about the use of the m.2 slot in this way.

If you’d like to know more about m.2, we’ve taken a look at it in more depth.

3D Printing With a Hot Glue Gun

Face it, we’ve all at some time or other looked at our hot glue guns, and thought “I wonder if I could use that for 3D printing!”. [Proper Printing] didn’t just think it, he’s made a working hot glue 3D printer. As you’d expect, it’s the extruder which forms the hack here.

A Dremel hot glue gun supplies the hot end, whose mains heater cartridge is replaced with a low voltage one with he help of a piece of brass tube. He already has his own design for an extruder for larger diameters, so he mates this with the hot end. Finally the nozzle is tapped with a thread to fit an airbrush nozzle for printing, and he’s ready tp print. With a much lower temperature and an unheated bed it extrudes, but it takes multiple attempts and several redesigns of the mechanical parts of the extruder before he finally ended up with the plastic shell of the glue gun as part of the assembly.

The last touch is a glue stick magazine that drops new sticks into a funnel on top of the extruder, and it’s printing a Benchy. At this point you might be asking why go to all this effort, but when you consider that there are other interesting materials which are only available in stick form it’s clear that this goes beyond the glue. If you’re up for more hot glue gun oddities meanwhile, in the past we’ve shown you the opposite process to this one.

An Electric Vehicle Conversion With A Difference

For a first try at an electric vehicle conversion we’re guessing that most would pick a small city car as a base vehicle, or perhaps a Kei van. Not [LiamTronix], who instead chose to do it with an old Ferguson tractor. It might not be the most promising of EV platforms, but as you can see in the video below, it results in a surprisingly practical agricultural vehicle.

A 1950s or 1960s tractor like the Ferguson usually has its engine as a structural member with the bellhousing taking the full strength of the machine and the front axle attached to the front of the block. Thus after he’s extracted the machine from its barn we see him parting engine and gearbox with plenty of support, as it’s a surprisingly hazardous process. These conversions rely upon making a precise plate to mount the motor perfectly in line with the input shaft. We see this process, plus that of making the splined coupler using the center of the old clutch plate. It’s been a while since we last did a clutch alignment, and seeing him using a 3D printed alignment tool we wish we’d had our printer back then.

The motor is surprisingly a DC unit, which he first tests with a 12 V car battery. We see the building of a hefty steel frame to take the place of the engine block in the structure, and then a battery pack that’s beautifully built. The final tractor at the end of the video still has a few additions before it’s finished, but it’s a usable machine we wouldn’t be ashamed to have for small round-the-farm tasks.

Surprisingly there haven’t been as many electric tractors on these pages as you’d expect, though we’ve seen some commercial ones.

An International Hackerspace Map

If you’re looking for a hackerspace while on your travels, there is more than one website which shows them on a map, and even tells you whether or not they are open. This last feature is powered by SpaceAPI, a standard way for hackerspaces to publish information about themselves, including whether or not they are closed.

Given such a trove of data then it’s hardly surprising that [S3lph] would use it to create a gigantic map of central Europe with lights in the appropriate places (German language, Google Translate link) to show the spaces and their status.

The lights are a set of addressable LEDs and the brain is an ESP32, making this an accessible project for most hackers with the time to assemble it. Unsurprisingly then it’s not the first such map we’ve seen, though it’s considerably more ambitious than the last one. Meanwhile if your hackerspace doesn’t have SpaceAPI yet or you’re simply curious about the whole thing, we took a look at it back in 2021.

Thanks [Dave] for the tip.

The Pound ( or Euro, Or Dollar ) Can Still Be In Your Pocket

A British journalistic trope involves the phrase “The pound in your pocket”, a derisory reference to the 1960s Prime Minister Harold Wilson’s use of it to try to persuade the public that a proposed currency devaluation wouldn’t affect them. Nearly six decades later not so many Brits carry physical pounds in their pockets as electronic transfers have become more prevalent, but the currency remains. So much so that the governor of the Bank of England has had to reassure the world that the pound won’t be replaced by a proposed “Britcoin” cryptocurrency should that be introduced.

Normally matters of monetary policy aren’t within Hackaday’s remit, but since the UK is not the only country to mull over the idea of a tightly regulated cryptocurrency tied to their existing one, there’s a privacy angle to be considered while still steering clear of the fog of cryptocurrency enthusiasts. The problem is that reading the justification for the new digital pound from the Bank of England, it’s very difficult to see much it offers which isn’t already offered by existing cashless payment systems. Meanwhile it offers to them a blank regulatory sheet upon which they can write any new rules they want, and since that inevitably means some of those rules will affect digital privacy in a negative manner, it should be a worry to anyone whose government has considered the idea. Being at pains to tell us that we’ll still be able to see a picture of the King (or a dead President, or a set of bridges) on a bit of paper thus feels like an irrelevance as increasingly few of us handle banknotes much anyway these days. Perhaps that act in itself will now become more of an act of protest. And just when we’d persuaded our hackerspaces to go cashless, too.

Header: Wikitropia, CC BY-SA 3.0.

BNCs For An Old Instrument

Back in the summer our eye was caught by [Jazzy Jane]’s new signal generator, or perhaps we should say her new-to-her signal generator. It’s an Advance E1 from around 1950, and it was particularly interesting from here because it matches the model on the shelf above this bench. She’s back with a new video on the E1, allowing us a further look inside it as she replaces a dead capacitor, gets its audio oscillator working, and upgrades its sockets.

Treating us to a further peek inside the unit, first up is a leaky capacitor. Then a knotty question for old tech enthusiasts, to upgrade or not? The ancient co-ax connectors are out of place on a modern bench, so does originality matter enough to give it a set of BNC sockets? We’d tend to agree; just because we have some adapters for the unit here doesn’t mean it’s convenient. Following on from that is a period variable frequency audio mod which has failed, so out that comes and a little fault-finding is required to get the wiring of the audio transformer.

These instruments are not by any means compact, but they do have the advantage of being exceptionally well-built and above all cheap. We hope readers appreciate videos like the one below the break, and that you’re encouraged not to be scared of diving in to older items like this one to fix them. Meanwhile the first installment is here.

McDonalds Ice Cream Machines Gain A DMCA Exemption

Sad clown holding melted ice cream cone

An unlikely theatre for an act in the right-to-repair saga came last year in the form of McDonalds restaurants, whose McFlurry ice cream machines are prone to breakdown. The manufacturer had locked them down, and a franchisee with a broken machine had no option but to call them for an expensive repair job. iFixit and Public Knowledge challenged this with a request for a DMCA exemption from the Copyright Office, and now news emerges that this has been granted.

The exemption in question isn’t specific to McDonalds, instead it applies to retail food preparation equipment in general, which includes ice-cream machines. We’re guessing that franchisees won’t be breaking out the screwdrivers either, instead it’s likely to lower significantly the cost of a service contract for them and any other food industry operators hit with the same problem. Meanwhile any hackers who’ve picked up an old machine can now fix it themselves without breaking the law, and maybe the chances of your local Mickey D’s having no McFlurries have gone down.

This story has featured more than once on these pages, so catch up here, and here.

RF Detector Chip Helps Find Hidden Cameras and Bugs

It’s a staple of spy thriller movies, that the protagonist has some kind of electronic scanner with which he theatrically searches his hotel room to reveal the bad guys’ attempt to bug him. The bug of course always had a flashing LED to make it really obvious to viewers, and the scanner was made by the props department to look all cool and futuristic.

It’s not so far-fetched though, while bugs and hidden cameras in for example an Airbnb may not have flashing LEDs, they still emit RF and can be detected with a signal strength meter. That’s the premise behind [RamboRogers]’ RF hunter, the spy movie electronic scanner made real.

At the rear of the device is an ESP32, but the front end is an AD8317 RF detector chip. This is an interesting and useful component, in that it contains a logarithmic amplifier such that it produces a voltage proportional to the RF input in decibels. You’ll find it at the heart of an RF power meter, but it’s also perfect for a precision field strength meter like this one. That movie spy would have a much higher chance of finding the bug with one of these.

For the real spies of course, the instruments are much more sophisticated.

A Birthday Cake for a Retrocomputer Designer

When making a birthday cake a bit more personal, one can create a novelty themed confection appropriate for the lucky recipient. In the case of [Spencer Owen], who you may know as the creator of the RC2014 retrocomputing ecosystem, it was appropriate to have one of the little machines at work somewhere, so [peahen] did just that. The result is a cake in the shape of an IMSAI 8080 microcomputer, but it does more than just look the part. This is a working replica of the classic machine, powered as you might expect by an RC2014 sitting next to it.

The lights are a set of addressable LEDs, and the switches are made from appropriately colored sweets. Sadly the plan to make these capacitive touch switched failed as the wiring became buried in the icing, but the LEDs deserve a second look. They’re encased in translucent heatshrink sleeving which is embedded under a layer of white icing, which is translucent enough, but on top for the classic panel light look are a set of edible cake-maker’s jewels. Best of all while all except the electronics is edible, the front panel is robust enough to have been removed from the cake in one and thus will live on.

We rather like the idea of electronics meeting sugarcraft, because fondant is a surprisingly versatile medium that deserves attention much further than just confectionery. We remember it being a popular cheap way to experiment with 3D printing back at the dawn of open source printers, and it still has some potential. Meanwhile if you’ve not seen the RC2014 we reviewed its original version back in 2016, and since then it’s evolved to become an ecosystem in its own right.

75-In-One Music

It’s likely that many Hackaday readers will have had their interest in electronics as a child honed by exposure to an electronics kit. The type of toy that featured a console covered in electronic components with spring terminals, and on which a variety of projects could be built by wiring up circuits. [Matthew North Music] has a couple of these, and he’s made a video investigating whether they can be used to make music.

The kits he’s found are a Radio Shack one from we’re guessing the 1970s, and a “Cambridge University Recording Studio” kit that looks to be 1990s-vintage. The former is all discrete components and passive, while the latter sports that digital audio record/playback chip that was the thing to have in a novelty item three decades ago. With them both he can create a variety of oscillator and filter circuits, though for the video he settles for a fairly simple tone whose pitch is controlled by an light-dependent resistor, and a metronome as a drum beat.

The result is a little avant garde, but certainly shows promise. The beauty of these kits is they can now be had for a song, and as grown-ups we don’t have to follow the rules set out in the book, so we can see there’s a lot of fun to be had. We look forward to some brave soul using them in a life performance at a hacker camp.

Save A Packet, Use Cheap Co-Ax!

Anyone who works with radio transmitters will know all about matching and impedance, and also about the importance of selecting the best co-axial cable connecting transistor and antenna. But here’s [Steve, KD2WTU] with a different take, he’s suggesting that sometimes a not-so-good co-ax choice can make the grade. He’s passing up expensive 50 ohm cable in favour of the cheap and ubiquitous 75 ohm RG6 cable used in domestic TV and satellite receiver installations.

Fighting that received wisdom, he outlines the case for RG6. It’s cheap and it has a surprisingly low loss figure compared to some more conventional choices, something that shouldn’t be a surprise once we consider that it’s designed to carry GHz-plus signals. Where it loses is in having a lower maximum power rating. Power shouldn’t be a problem to a shoestring ham for whom 100W is QRO. Another issue is that 75 ohm coax necessitates a tuner for 50 ohm transmitters. It also has the effect of changing the resonance of some antennas, meaning a few mods may be in order.

So we’re convinced, and with the relatively QRP shack here we can’t see RG6 being a problem. Maybe it’s something to try in out next antenna experiment. Meanwhile if you’re interested in some of the background on co-ax impedance choices, we’ve been there before.

Forget Flipper, How About Capybara?

One of the hacker toys to own over the last year has been the Flipper Zero, a universal wireless hacking tool which even caused a misplaced moral panic about car theft in Canada. A Flipper is cool as heck of course but not the cheapest of devices. Fortunately there’s now an alternative in the form of the CapybaraZero. It’s a poor-hacker’s Flipper Zero which you can assemble yourself from a heap of inexpensive modules.

At the centre is an ESP32-S3 board, which brings with it that chip’s wireless and Bluetooth capabilities. To that is added an ST7789 TFT display, a PN532 NFC reader, an SX1276 LoRa and multi-mode RF module, and an IR module. The firmware can be found through GitHub. Since the repo is nearly two years old and still in active development, we’re hopeful CapybaraZero will gain features and stability.

If you’re interested in our coverage of the Canadian Flipper panic you can read it here, and meanwhile if you’re using one of those NFC modules, consider tuning it.

Winamp Taken Down: Too Good For This Open Source World

If you picked today in your hackerspace’s sweepstake on when Winamp would pull their code repository, congratulations! You’re a winner! The source for the Windows version of the venerable music player was released on GitHub three weeks ago, and after some derision over its licence terms, a bunch of possible open source violations, and the inadvertent release of some proprietary third-party code, it’s been taken down. We’re sure that if you still have a burning desire to look at it then it won’t be too difficult to find a copy through your favorite search engine, leaving the question of what really just happened.

It’s fairly obvious that the owners of the code lacked some level of understanding of just what open source really is, based on their not-really-open licence and all those code leaks. They did back down on not allowing people to create forks, but it’s evident that they didn’t anticipate the reaction they got. So were they merely a bit clueless, or was it all just a publicity stunt involving a piece of software that’s now of more historical than practical interest? It’s possible we’ll never know, but the story has provided those of us sitting on the fence eating popcorn with some entertainment.

An Arduino Triggers a Flash With Sound

To capture an instant on film or sensor with a camera, you usually need a fast shutter. But alternately a flash can be triggered with the scene in the dark and the shutter wide open. It’s this latter technique which PetaPixel are looking at courtesy of the high-speed class at Rochester Institute of Technology. They’re using a cheap sound sensor module and an Arduino to catch instantaneous photographs, with students caught in the act of popping balloons.

The goal here was to keep things as simple as possible. All you’ll need in addition to the Arduino (or really, any modern microcontroller) is the sound sensor — which are often sold as “microphone shields.” To trigger the flash while still providing electrical isolation is a reed relay. The write-up notes that higher performance systems would be better off with an optoisolator, but this provides a low-cost alternative to get started with.

We rather like the technique, and perhaps it’s a thing to try at a future hacker camp. Unsurprisingly it’s not the first flash trigger for water balloons we’ve seen.

❌