Vista de Lectura

Hay nuevos artículos disponibles. Pincha para refrescar la página.

Measuring the Mighty Roar of SpaceX’s Starship Rocket

SpaceX’s Starship is the most powerful launch system ever built, dwarfing even the mighty Saturn V both in terms of mass and total thrust. The scale of the vehicle is such that concerns have been raised about the impact each launch of the megarocket may have on the local environment. Which is why a team from Brigham Young University measured the sound produced during Starship’s fifth test flight and compared it to other launch vehicles.

Published in JASA Express Letters, the paper explains the team’s methodology for measuring the sound of a Starship launch at distances ranging from 10 to 35 kilometers (6 to 22 miles). Interestingly, measurements were also made of the Super Heavy booster as it returned to the launch pad and was ultimately caught — which included several sonic booms as well as the sound of the engines during the landing maneuver.

Sounds were measured at eight different locations.

The paper goes into considerable detail on how the sound produced Starship’s launch and recovery propagate, but the short version is that it’s just as incredibly loud as you’d imagine. Even at a distance of 10 km, the roar of the 33 Raptor engines at ignition came in at approximately 105 dBA — which the paper compares to a rock concert or chainsaw. Double that distance to 20 km, and the launch is still about as loud as a table saw. On the way back in, the sonic boom from the falling Super Heavy booster was enough to set off car alarms at 10 km from the launch pad, which the paper says comes out to a roughly 50% increase in loudness over the Concorde zooming by.

OK, so it’s loud. But how does it compare with other rockets? Running the numbers, the paper estimates that the noise produced during a Starship launch is at least ten times greater than that of the Falcon 9. Of course, this isn’t hugely surprising given the vastly different scales of the two vehicles. A somewhat closer comparison would be with the Space Launch System (SLS); the data indicates Starship is between four and six times as loud as NASA’s homegrown super heavy-lift rocket.

That last bit is probably the most surprising fact uncovered by this research. While Starship is the larger and more powerful  of the two launch vehicles, the SLS is still putting out around half the total energy at liftoff. So shouldn’t Starship only be twice as loud? To try and explain this dependency, the paper points to an earlier study done by two of the same authors which compared the SLS with the Saturn V. In that paper, it was theorized that the arrangement of rocket nozzles on the bottom of the booster may play a part in the measured result.

NASA Announces New Trials for In-Space Laser Welding

In-space manufacturing is a big challenge, even with many of the same manufacturing methods being available as on the ground. These methods include rivets, bolts, but also welding, the latter of which was first attempted fifty years ago by Soviet cosmonauts. In-space welding is the subject of a recently announced NASA collaboration. The main aspects to investigate are the effects of reduced gravity and varying amounts of atmosphere on welds.

The Soviets took the lead in space welding when they first performed the feat during the Soyuz-6 mission in 1969. NASA conducted their own welding experiments aboard Skylab in 1973, and in 1984, the first (and last) welds were made in open space during an EVA on the Salyut-7 mission. This time around, NASA wants to investigate fiber laser-based welding, as laid out in these presentation slides. The first set of tests during parabolic flight maneuvers were performed in August of 2024 already, with further testing in space to follow.

Back in 1996 NASA collaborated with the E.O. Paton Welding Institute in Kyiv, Ukraine, on in-space welding as part of the ISWE project which would have been tested on the Mir space station, but manifesting issues ended up killing this project. Most recently ESA has tested in-space welding using the same electron-beam welding (EBW) approach used by the 1969 Soyuz-6 experiment. Electron beam welding has the advantage of providing great control over the weld in a high-vacuum environment such as found in space.

So why use laser beam welding (LBW) rather than EBW? EBW obviously doesn’t work too well when there is some level of atmosphere, is more limited with materials and has as only major advantage that it uses less power than LBW. As these LBW trials move to space, they may offer new ways to create structure and habitats not only in space, but also on the lunar and Martian surface.


Featured image: comparing laser beam welding with electron beam welding in space. (Source: E. Choi et al., OSU, NASA)

Britain’s Oldest Satellite on the Move: a Space Curiosity

Photo manipulation of Skynet-1A hovering a planet

Space and mystery always spark our curiosity, so when we stumbled upon the story of Skynet-1A, Britain’s first communication satellite from 1969, we knew it was worth exploring. The BBC recently highlighted its unexpected movement across the sky – you can check out their full coverage here. The idea that this half-century-old hunk of metal mysteriously shifted orbits leaves us with more questions than answers. Who moved Skynet-1A, and why?

Launched just months after the Apollo 11 Moon landing, Skynet-1A stood as a symbol of Cold War innovation, initially placed above East Africa to support British military communications. But unlike the silent drift of inactive satellites heading naturally eastward, Skynet-1A defied orbital norms, popping up halfway across the globe above the Americas. This wasn’t mere chance; someone or something had made it fire its thrusters, likely in the mid-1970s.

Experts like Dr. Stuart Eves and UCL’s Rachel Hill suggest the possibility of control being temporarily transferred to the US, particularly during maintenance periods at the UK’s RAF Oakhanger. Still, the specifics remain buried in lost records and decades-old international collaborations. Skynet-1A’s journey serves as a stark reminder of the persistent challenges in space and the gaps in our historical data.

Looking for more space oddities? Hackaday has some interesting articles on space debris. You can read the original BBC article here.

The Constant Monitoring and Work That Goes into JWST’s Optics

The James Webb Space Telescope’s array of eighteen hexagonal mirrors went through an intricate (and lengthy) alignment and calibration process before it could begin its mission — but the process is far from being a one-and-done. Keeping the telescope aligned and performing optimally requires constant work from its own team dedicated to the purpose.

Alignment of the optical elements in JWST are so fine, and the tool is so sensitive, that even small temperature variations have an effect on results. For about twenty minutes every other day, the monitoring program uses a set of lenses that intentionally de-focus images of stars by a known amount. These distortions contain measurable features that the team uses to build a profile of changes over time. Each of the mirror segments is also checked by being imaged selfie-style every three months.

This work and maintenance plan pays off. The team has made over 25 corrections since its mission began, and JWST’s optics continue to exceed specifications. The increased performance has direct payoffs in that better data can be gathered from faint celestial objects.

JWST was fantastically ambitious and is extremely successful, and as a science instrument it is jam-packed with amazing bits, not least of which are the actuators responsible for adjusting the mirrors.

Why the Saturn V Used Kerosene for its Hydraulics Fluid

We usually think of a hydraulic system as fully self-contained, with a hydraulic pump, tubing, and actuators filled with a working fluid. This of course adds a lot of weight and complexity that can be undesirable in certain projects, with the Saturn V Moon rocket demonstrating a solution to this which is still being used to this day. In a blast-from-the-past, a December 1963 article originally published in Hydraulics & Pneumatics details the kerosene-based hydraulics (fueldraulics) system for the S-1C stage’s gimbal system that controlled the four outer engines.

Rather than a high-pressure, MIL-H-5606 hydraulic oil-based closed loop as in the Saturn I, this takes kerosene from the high-pressure side of the F1 rocket engine’s turbopump and uses it in a single-pass system. This cuts out a separate hydraulic pump, a hydraulic reservoir, which was mostly beneficial in terms of reducing points of failure (and leaks), ergo increasing reliability. Such was the theory at the time at least, and due to issues with RP-1 kerosene’s relatively low flash point and differences in lubricity properties, ultimately RJ-1, RP-1 and MIL-H-5606 were used during checkout leading up to the launch.

In hindsight we know that this fueldraulic system worked as intended with all Saturn V launches, and today it’s still used across a range of aircraft in mostly jet engines and actuators elsewhere of the Boeing 777 as well as the F-35. In the case of the latter it only made the news when there was an issue that grounded these jets due to badly crimped lines. Since fueldraulics tends to be lower pressure, this might be considered a benefit in such cases too, as anyone who has ever experienced a hydraulic line failure can attest to.

Featured image: Gimbal systems proposed for the F-1, oxygen-kerosene engine with a fueldraulic system. (Source: Hydraulics & Pneumatics, 1963)

LEAF Mission Seeks to Grow Plants on the Moon

Space Lab's LEAF model crops & growth chamber.
Credit: Space Lab

We have seen a recent surge of interest in whether it’s possible to grow potatoes and other plants in Martian soil, but what is the likelihood that a future (manned) lunar base could do something similar? To that end [Space Lab] is developing the LEAF project that will be part of NASA’s upcoming Artemis III lunar mission. This mission would be the first to have Americans return to the Moon by about 2028, using the somewhat convoluted multi-system SLS-Starship-Lunar Gateway trifecta. The LEAF (Lunar Effects on Agricultural Flora) science module will feature three types of plants (rape (Brassica Rapa), duckweed and cress (Arabidopsis thaliana) ) in an isolated atmosphere.

The main goal of this project is to find out how the plants are affected by the lunar gravity, radiation and light levels at the landing site at the south pole. This would be the equivalent of a hydroponics setup in a lunar base. After about a week of lunar surface time the growth chamber will be split up into two: one returning back to Earth for examination and the other remains on the surface to observe their long-term health until they perish from cold or other causes.

This is not the first time that growing plants on the lunar surface has been attempted, with China’s Chang’e 4 mission from 2019. The lander’s Lunar Micro Ecosystem featured a range of seeds as well, which reportedly successfully sprouted, but the project was terminated after 9 days instead of the planned 100 due to issues with heating the biosphere during the brutal -52°C lunar night. Hopefully LEAF can avoid this kind of scenario when it eventually is deployed on the Moon.

Voyager 1 Fault Forces Switch to S-Band

We hate to admit it, but whenever we see an article about either Voyager spacecraft, our thoughts immediately turn to worst-case scenarios. One of these days, we’ll be forced to write obituaries for the plucky interstellar travelers, but today is not that day, even with news of yet another issue aboard Voyager 1 that threatens its ability to communicate with Earth.

According to NASA, the current problem began on October 16 when controllers sent a command to turn on one of the spacecraft’s heaters. Voyager 1, nearly a light-day distant from Earth, failed to respond as expected 46 hours later. After some searching, controllers picked up the spacecraft’s X-band downlink signal but at a much lower power than expected. This indicated that the spacecraft had gone into fault protection mode, likely in response to the command to turn on the heater. A day later, Voyager 1 stopped communicating altogether, suggesting that further fault protection trips disabled the powerful X-band transmitter and switched to the lower-powered S-band downlink.

This was potentially mission-ending; the S-band downlink had last been used in 1981 when the probe was still well within the confines of the solar system, and the fear was that the Deep Space Network would not be able to find the weak signal. But find it they did, and on October 22 they sent a command to confirm S-band communications. At this point, controllers can still receive engineering data and command the craft, but it remains to be seen what can be done to restore full communications. They haven’t tried to turn the X-band transmitter back on yet, wisely preferring to further evaluate what caused the fault protection error that kicked this whole thing off before committing to a step like that.

Following Voyager news these days feels a little morbid, like a death watch on an aging celebrity. Here’s hoping that this story turns out to have a happy ending and that we can push the inevitable off for another few years. While we wait, if you want to know a little more about the Voyager comms system, we’ve got a deep dive that should get you going.

Thanks to [Mark Stevens] for the tip.

Video Provides Rare Look Inside China’s Space Station

China has a space station — it’s called Tiangong, the first module was launched in 2021, and it’s all going quite swimmingly, thank you very much. That’s essentially what we know about the orbital complex here in the West, as China tends to be fairly secretive when it comes to their activities in space.

But thanks to a recently released video by the state-funded CCTV Video News Agency, we now have an unprecedented look inside of humanity’s newest orbital laboratory. Shenzhou-18 crew members [Ye Guangfu], [Li Cong], and [Li Guangsu] provide viewers with a full-blown tour of the station, and there’s even baked-in English subtitles so you won’t miss a beat.

The few looks the public has gotten inside of Tiangong in the past have been low-resolution and generally of the “shaky cam” variety. In comparison, this flashy presentation was clearly made to impress an international audience. But let’s be fair, if you managed to build your own crewed station in low Earth orbit, wouldn’t you want to show it off a bit?

Crew berths on Tiangong appear considerably more comfortable than those on the ISS.

So what did we learn about Tiangong from this tour? Well, admittedly not more than we could have guessed. The layout of the three-module station isn’t entirely unlike the International Space Station or even its Soviet predecessor, Mir.

One module contains a common area where the crew meets and eats their meals, as well as the sleeping berths for crew members. (The small portholes in each berth are a nice touch.) Then there are the multi-purpose laboratory modules with their rows of rack mounted experiments, an exercise area, and finally an airlock that can be used to either bring cargo onboard or expose experiments to space.

Even though it’s much smaller than the ISS, one can’t help but notice that the inside of the Tiangong appears a bit less cramped. The modules of the Chinese station have a slightly sleeker internal look, and overall, everything seems less cluttered, or at least, better organized. Some online commenters have equated it to the comparison between the SpaceX Dragon and Russia’s Soyuz capsule, which given the relative ages of the two stations, isn’t wholly inaccurate.

China’s space program has been making great strides over the last several years, but from an outsider’s perspective, it’s been difficult to follow. It’s been doubly frustrating for us here at Hackaday. We’d love to provide the same sort of in-depth coverage we do for American and European missions, but often it’s a challenge to find the technical data that requires. Here’s hoping this video means China is looking to be more transparent about their off-world activities going forward.

Clockwork Rover For Venus

Venus hasn’t received nearly the same attention from space programs as Mars, largely due to its exceedingly hostile environment. Most electronics wouldn’t survive the 462 °C heat, never mind the intense atmospheric pressure and sulfuric acid clouds. With this in mind, NASA has been experimenting with the concept of a completely mechanical rover. The [Beardy Penguin] and a team of fellow students from the University of Southampton decided to try their hand at the concept—video after the break.

The project was divided into four subsystems: obstacle detection, mechanical computer, locomotion (tracks), and the drivetrain. The obstacle detection system consists of three (left, center, right) triple-rollers in front of the rover, which trigger inputs on the mechanical computer when it encounters an obstacle over a certain size. The inputs indicate the position of each roller (up/down) and the combination of inputs determines the appropriate maneuver to clear the obstacle. [Beardy Penguin] used Simulink to design the logic circuit, consisting of AND, OR, and NOT gates. The resulting 5-layer mechanical computer quickly ran into the limits of tolerances and friction, and the team eventually had trouble getting their design to work with the available input forces.

Due to the high-pressure atmosphere, an on-board wind turbine has long been proposed as a viable power source for a Venus rover. It wasn’t part of this project, so it was replaced with a comparable 40 W electric motor. The output from a logic circuit goes through a timing mechanism and into a planetary gearbox system. It changes output rotation direction by driving the planet gear carrier with the sun gear or locking it in a stationary position.

As with many undergraduate engineering projects, the physical results were mixed, but the educational value was immense. They got individual subsystems working, but not the fully integrated prototype. Even so, they received several awards for their project and even came third in an international Simulink challenge. It also allowed another team to continue their work and refine the subsystems.

Writingmate.ai

Writingmate.ai is a writing and automation helper for Google Chrome powered by GPT-4. It uses the powerful features of the ChatGPT API to understand and respond to your chat messages and generate copy based on the provided templates. Writingmate.ai can generate, translate, paraphrase and edit any text, draw images, and explain any text on any […]

Source

Libre Space Foundation Aims to Improve Satellite Tech

There’s no shortage of movies, TV shows, and books that show a dystopian future with corporations run amok in outer space with little or no effective oversight. Dune, The Expanse, and The Dispossessed spring to mind as predicting different aspects of this idea, but there are plenty of other warnings throughout sci-fi depicting this potential future. One possible way of preventing this outcome is by ensuring that space is as open-sourced as possible and one group, the Libre Space Foundation (LSF), is working towards this end. Their latest is a project with Ondsel to develop and model a satellite deploying mechanism using almost entirely open source software.

The LSF had already designed the PICOBUS satellite launcher system that flew to space in 2022 and deployed a number of CubeSats, but the group needed more information about how the system would perform. They turned to Ondsel to help develop a multi-body dynamics (MBD) solver, managing simulations with mass-spring-damper models. The satellite launcher includes a large constant-force spring that pushes the CubeSats out of the device once the door is opened, and the model can now simulate their paths in space without gravity. The team will launch their next set of satellites sometime next year on an RFA-ONE rocket.

The LSF maintains a huge database of their open source space projects, including this one, on their GitLab page. Although it might seem like small potatoes now, the adoption of open source software and hardware by space-fairing entities can help further the democratization of low Earth orbit.

Thanks to [johnad] for the tip!

Mage.space

Mage.space is a free online AI image generator running on Stable Diffusion. The site has a super easy to use interface and a fast generation time. After your generation is complete, you can click on “Enhance” to automatically upscale your image to 2048×2048. Mage.space is currently using the v1.5 Stable Diffusion model.

Source

Missive

Missive is an AI-powered email, chat, and task management tool designed for productive teams. It consolidates all internal and external communication channels, including email, SMS, and webchat, into a single collaborative workspace. With features like shared inboxes, scoped conversations, team accountability tracking, and integration with popular productivity apps, Missive aims to streamline workflows and enhance […]

Source

Microsoft Teams

Microsoft Teams is a unified collaboration and communication platform that combines persistent workplace chat, video meetings, file storage, and application integration. It is designed to facilitate teamwork and provide a central hub for collaboration within an organization. MS Teams also has several useful AI features directly integrated into it, which we will go over in […]

Source

❌