Vista de Lectura

Hay nuevos artículos disponibles. Pincha para refrescar la página.

The Most Printable 3D Printer Yet

A 3D printer frame made of red plastic is shown on the left-hand side of the image. On the right-hand side, there is a large motor with a plastic frame attached to the frame. Next to the 3D printer, a blue plastic mesh is being fed through a red plastic frame.

Despite the best efforts of the RepRap community over the last twenty years, self-replicating 3D printers have remained a stubbornly elusive goal, largely due to the difficulty of printing electronics. [Brian Minnick]’s fully-printed 3D printer could eventually change that, and he’s already solved an impressive number of technical challenges in the process.

[Brian]’s first step was to make a 3D-printable motor. Instead of the more conventional stepper motors, he designed a fully 3D-printed 3-pole brushed motor. The motor coils are made from solder paste, which the printer applies using a custom syringe-based extruder. The paste is then sintered at a moderate temperature, resulting in traces with a resistivity as low as 0.001 Ω mm, low enough to make effective magnetic coils.

Brushed motors are less accurate than stepper motors, but they do have a particularly useful advantage here: their speed can be controlled simply by varying the voltage. This enables a purely electromechanical control system – no microcontroller on this printer! A 3D-printed data strip encodes instructions for the printer as holes in a plastic sheet, which open and close simple switches in the motor controller. These switches control the speed, direction, and duration of the motors’ movement, letting the data strip encode motion vectors.

Remarkably, the hotend on this printer is also 3D-printed. [Brian] took advantage of the fact that PEEK’s melting point increases by about 110 ℃ when it’s annealed, which should allow an annealed hotend to print itself. So far it’s only extruded PLA, but the idea seems sound.

The video below the break shows a single-axis proof of concept in action. We haven’t been able to find any documentation of a fully-functional 3D printer, but nevertheless, it’s an impressive demonstration. We’ve covered similar printers before, and if you make progress in this area, be sure to send us a tip.

DIY Linear Tubular Motor Does Precise Slides

We’ve seen plenty of motor projects, but [Jeremy]’s DIY Tubular Linear Motor is a really neat variety of stepper motor in a format we certainly don’t see every day. It started as a design experiment in making a DIY reduced noise, gearless actuator and you can see the result here.

Here’s how it works: the cylindrical section contains permanent magnets, and it slides back and forth through the center of a row of coils depending on how those coils are energized. In a way, it’s what one would get by unrolling a typical rotary stepper motor. The result is a gearless (and very quiet) linear actuator that controls like a stepper motor.

While a tubular linear motor is at its heart a pretty straightforward concept, [Jeremy] found very little information on how to actually go about making one from scratch. [Jeremy] acknowledges he’s no expert when it comes to motor design or assembly, but he didn’t let that stop him from iterating on the concept (which included figuring out optimal coil design and magnet spacing and orientation) until he was satisfied. We love to see this kind of learning process centered around exploring an idea.

We’ve seen DIY linear motors embedded in PCBs and even seen them pressed into service as model train tracks, but this is the first time we can recall seeing a tubular format.

Watch it in action in the short video embedded below, and dive into the project log that describes how it works for added detail.

Automatically Crack Safes with this Autodialer

When attempting to secure something, whether it’s a computer, sensitive data, or valuables, there’s always going to be a way to break that security. It might be impossibly hard, like taking centuries to brute-force an encryption algorithm, but it’s weakness is still there. And, like the future might make certain encryption obsolete, modern electronics has made security of the past somewhat obsolete as well. [Startup Chuck] has been using tools the creators of safes from the late 1800s could probably not have imagined.

The tool that [Startup Chuck] has come up with is known as an autodialer in the safe-cracking world, and as its name suggests it automates the process of opening the safe by trying as many combinations as possible. The autodialer attaches to the safe with three magnetic feet and couples to the dial through a chuck attached to a magnetic clutch, which allows the autodialer to disengage as soon as the correct combination is found. It’s driven with a stepper motor which can test out combinations so fast that [Startup Chuck] needed to take 240 fps video and slow it down to make sure that the mechanism was behaving properly.

The autodialer itself can’t actually open the safe, though. The last step of the process is taken care of by a bungie cord, attached to the safe handle to pre-tension it enough so that when the correct combination is finally entered the safe pops open automatically. For anyone looking to duplicate the project, [Startup Chuck] has added the program code to a GitHub page. If you’re looking at a more modern safe, though, there are of course ways to crack their security systems as well.

Backyard Rope Tow from Spare Parts

A few years ago, [Jeremy Makes Things] built a rope tow in his back yard so his son could ski after school. Since the lifts at the local hill closed shortly after schools let out, this was the only practical way for his son to get a few laps in during the week. It’s cobbled together from things that [Jeremy] had around the house, and since the original build it’s sat outside for a few years without much use. There’s been a lot more snow where he lives this year though, so it’s time for a rebuild.

The power source for the rope tow is an old gas-powered snowblower motor, with a set of rollers and pulleys for the rope made out of the back end of a razor scooter. Some polyurethane was poured around the old wheel hub so that the rope would have something to grip onto. The motor needed some sprucing up as well, from carburetor adjustment, fuel tank repairs, and some other pieces of maintenance before it could run again. With that out of the way it could be hoisted back up a tree at the top of the hill and connected to the long rope.

This isn’t the first time [Jeremy] has had to perform major maintenance on this machine either. Three years ago it needed plenty of work especially around the polyurethane wheel where [Jeremy] also had to machine a new wheel bearing in addition to all the other work that had to go into repairing it that time. From the looks of things though it’s a big hit with his son who zips right back up the hill after each ski run. Getting to the tops of ski runs with minimal effort has been a challenge of skiers and snowboarders alike for as long as the sport has been around, and we’ve seen all kinds of unique solutions to that problem over the years.

❌