Although we think of air-to-air radar as a relatively modern invention, it first made its appearance in WWII. Some late war fighters featured the AN/APS-13 Tail Warning Radar to alert the pilot when an enemy fighter was on his tail. In [WWII US Bombers]’ fascinating video we get a deep dive into this fascinating piece of tech that likely saved many allied pilots’ lives.
Fitted to aircraft like the P-51 Mustang and P-47 Thunderbolt, the AN/APS-13 warns the pilot with a light or bell if the aircraft comes within 800 yards from his rear. The system consisted of a 3-element Yagi antenna on the vertical stabilizer, a 410 Mhz transceiver in the fuselage, and a simple control panel with a warning light and bell in the cockpit.
In a dogfight, this allows the pilot to focus on what’s in front of him, as well as helping him determine if he has gotten rid of a pursuer. Since it could not identify the source of the reflection, it would also trigger on friendly aircraft, jettisoned wing tanks, passing flak, and the ground. This last part ended up being useful for safely descending through low-altitude clouds.
This little side effect turned out to have very significant consequences. The nuclear bombs used on Hiroshima and Nagasaki each carried four radar altimeters derived from the AN/APS-13 system.
From the earliest days of warfare, it’s never been enough to be able to build a deadlier weapon than your enemy can. Making a sharper spear, an arrow that flies farther and straighter, or a more accurate rifle are all important, but if you can’t make a lot of those spears, arrows, or guns, their quality doesn’t matter. As the saying goes, quantity has a quality of its own.
That was the problem faced by Britain in the run-up to World War II. In the 1930s, Rolls-Royce had developed one of the finest pieces of engineering ever conceived: the Merlin engine. Planners knew they had something special in the supercharged V-12 engine, which would go on to power fighters such as the Supermarine Spitfire, and bombers like the Avro Lancaster and Hawker Hurricane. But, the engine would be needed in such numbers that an entire system would need to be built to produce enough of them to make a difference.
“Contribution to Victory,” a film that appears to date from the early 1950s, documents the expansive efforts of the Rolls-Royce corporation to ramp up Merlin engine production for World War II. Compiled from footage shot during the mid to late 1930s, the film details not just the exquisite mechanical engineering of the Merlin but how a web of enterprises was brought together under one vast, vertically integrated umbrella. Designing the engine and the infrastructure to produce it in massive numbers took place in parallel, which must have represented a huge gamble for Rolls-Royce and the Air Ministry. To manage that risk, Rolls-Royce designers made wooden scale models on the Merlin, to test fitment and look for potential interference problems before any castings were made or metal was cut. They also set up an experimental shop dedicated to looking at the processes of making each part, and how human factors could be streamlined to make it easier to manufacture the engines.
With prototype engines and processes in hand, Rolls-Royce embarked on a massive scale-up to production levels. They built huge plants in Crewe and Glasgow, hopefully as far from the Luftwaffe’s reach as possible. They also undertook a massive social engineering effort, building a network of training institutions tasked with churning out the millions of skilled workers needed. Entire towns were constructed to house the workers, and each factory had its own support services, including fire brigade and medical departments.
As fascinating as the engineering behind the engineering is, the film is still a love letter to the engine itself, of which almost 150,000 copies would eventually be manufactured. The casting processes are perhaps the most interesting, but there’s eye candy aplenty for Merlin fans at every stage of production. We were also surprised to learn that Rolls-Royce took the added step of mounting finished Merlins in the cowlings needed for the various planes they were destined for, to ensure that the engine would be properly integrated with the airframe. This must have been a huge boon to groundcrews out in the field; being able to bolt a new nose on a Spitfire and get it back in the fight with a spanking new Merlin was probably key to victory in the Battle of Britain.