Vista de Lectura

Hay nuevos artículos disponibles. Pincha para refrescar la página.

A Cyberpunk Pocketwatch

An image of a black carabiner-esque frame surrounding a round, yellow bezeled digital watch. A black paracord lanyard is attached to the top right of the black frame and a yellow button is visible near the top left of the frame.

For a time, pocketwatches were all the rage, but they were eventually supplanted by the wristwatch. [abe] built this cyberpunk Lock’n’Watch to explore an alternate history for the once trendy device.

The build was inspired by the chunky looks of Casio sport watches and other plastic consumer electronics from the 1980s and 90s. The electronics portion of this project relies heavily on a 1.28″ Seeed Studio Round Display and a Raspberry Pi 2040 XIAO microcontroller board. The final product features a faux segmented display for information in almost the same color scheme as your favorite website.

[abe] spent a good deal of the time on this project iterating on the bezel and case to hold the electronics in this delightfully anachronistic enclosure. We appreciated the brief aside on the philosophical differences between Blender, TinkerCAD, and Fusion360. Once everything was assembled, he walks us through some of joys of debugging hardware issues with a screen flicker problem. We think the end result really fulfills the vision of a 1980s pocketwatch and that it might be just the thing to go with your cyberdeck.

We’ve seen accelerometers stuffed into old pocketwatch cases, a more useful smart pocketwatch, or you could learn how to repair and restore vintage watches.

Split-Flap Clock Flutters Its Way to Displaying Time Without Numbers

Here’s a design for a split-flap clock that doesn’t do it the usual way. Instead of the flaps showing numbers , Klapklok has a bit more in common with flip-dot displays.

Klapklok updates every 2.5 minutes.

It’s an art piece that uses custom-made split-flaps which flutter away to update the display as time passes. An array of vertically-mounted flaps creates a sort of low-res display, emulating an analog clock. These are no ordinary actuators, either. The visual contrast and cleanliness of the mechanism is fantastic, and the sound they make is less of a chatter and more of a whisper.

The sound the flaps create and the sight of the high-contrast flaps in motion are intended to be a relaxing and calming way to connect with the concept of time passing. There’s some interactivity built in as well, as the Klapklok also allows one to simply draw on it wirelessly with via a mobile phone.

Klapklok has a total of 69 elements which are all handmade. We imagine there was really no other way to get exactly what the designer had in mind; something many of us can relate to.

Split-flap mechanisms are wonderful for a number of reasons, and if you’re considering making your own be sure to check out this easy and modular DIY reference design before you go about re-inventing the wheel. On the other hand, if you do wish to get clever about actuators maybe check out this flexible PCB that is also its own actuator.

Geochron: Another Time, Another Timeless Tale

Geochron world time clock

The Geochron World Time Indicator is a clock that doubles as a live map of where the sun is shining on the Earth. Back in its day, it was a cult piece that some have dubbed the “Rolex on the wall.” Wired’s recent coverage of the clock reminded us of just how cool it is on the inside. And to dig in, we like [Attoparsec]’s restoration project on his own mid-1980s Geochron, lovingly fixing up a clock he picked up online.

[Attoparsec]’s recent restoration shares insights into the clock’s fascinating mechanics. Using a synchronous motor, transparent slides, and a lighted platen, the Geochron works like a glorified slide projector, displaying the analemma—a figure-eight pattern that tracks the sun’s position over the year.

But if you’re looking for a digital version, way back in 2011 we showcased [Justin]’s LED hack of FlorinC’s “Wise Clock”, which ingeniously emulated the Geochron’s day-night pattern using RGB LEDs, swapping out the faceplate for a world map printed on vellum. That’s probably a much more reasonable way to go these days. Why haven’t we seen more remakes of these?

The 1983 Clock Four Decades in the Making

In 1983, a 14-year-old [Will] saw an LED clock in The Sharper Image store. At $250, it stayed in the store. That was a lot of money back then, especially for most teenagers. But [Will] didn’t forget. After high school, he and a friend planned to build one from scratch. They worked out how they would do it and did a little prototyping, but never really finished. Well, they never really finished at the time. Because 33 years later, [Will] decided to finally put it together. Check it out in the video below.

[Will’s] learned a lot since his original design, plus we have tech today that would have seemed like magic in the late 1980s. But he wanted to stay true to the original design, so there’s no microcontroller or smart LEDs. Just binary counters and a lot of LEDs. There’s even a 555 doing duty as a reset timer.

The original design used the 60 Hz signal from the AC power supply. [Will] made that one concession to modern times and powered the clock from USB-C. That meant adding a reference oscillator, which is a good thing, anyway, as he explains in the post.

The result looks good and we don’t envy him soldering 275 SMD parts! He even graciously made a few and sent one to his old friend.

We don’t know why we were surprised [Will] soldered all those parts. He’s a key member of the people who put on the SMD soldering challenge each year at Supercon. Most LED clock projects from those days used 7-segment displays.

❌