Vista de Lectura

Hay nuevos artículos disponibles. Pincha para refrescar la página.

Double Your Analog Oscilloscope Fun with this Retro Beam Splitter

These days, oscilloscope hacking is all about enabling features that the manufacturer baked into the hardware but locked out in the firmware. Those hacks are cool, of course, but back in the days of analog scopes, unlocking new features required a decidedly more hardware-based approach.

For an example of this, take a look at this oscilloscope beam splitter by [Lockdown Electronics]. It’s a simple way to turn a single-channel scope into a dual-channel scope using what amounts to time-division multiplexing. A 555 timer is set up as an astable oscillator generating a 2.5-kHz square wave. That’s fed into the bases of a pair of transistors, one NPN and the other PNP. The collectors of each transistor are connected to the two input signals, each biased to either the positive or negative rail of the power supply. As the 555 swings back and forth it alternately applies each input signal to the output of the beam splitter, which goes to the scope. The result is two independent traces on the analog scope, like magic.

More after the break…

If you’re wondering how this would work on a modern digital scope, so was [Lockdown Electronics]. He gave it a go with his little handheld scope meter and the results were surprisingly good and illustrative of how the thing works. You can clearly see the 555’s square wave on the digital scope sandwiched between the two different input sine waves. Analog scopes always have trouble showing these rising and falling edges, which explains why the beam splitter looks so good on the CRT versus the LCD.

Does this circuit serve any practical purpose these days? Probably not, although you could probably use the same principle to double the number of channels on your digital scope. Eight channels on a four-channel scope for the price of a 555? Sounds like a bargain to us.

Close Shave for an Old Oscilloscope Saved with a Sticky Note

When you tear into an old piece of test equipment, you’re probably going to come up against some surprises. That’s especially true of high-precision gear like oscilloscopes from the time before ASICs and ADCs, which had to accomplish so much with discrete components and a lot of engineering ingenuity.

Unfortunately, though, those clever hacks that made everything work sometimes come back to bite you, as [Void Electronics] learned while bringing this classic Tektronix 466 scope back to life. A previous video revealed that the “Works fine, powers up” eBay listing for this scope wasn’t entirely accurate, as it was DOA. That ended up being a bad op-amp in the power supply, which was easily fixed. Once powered up, though, another, more insidious problem cropped up with the vertical attenuator, which failed with any setting divisible by two.

With this curious symptom in mind, [Void] got to work on the scope. Old analog Tek scopes like this use a bank of attenuator modules switched in and out of the signal path by a complex mechanical system of cams. It seemed like one of the modules, specifically the 4x attenuator, was the culprit. [Void] did the obvious first test and compared the module against the known good 4x module in the other channel of the dual-channel scope, but surprisingly, the module worked fine. That meant the problem had to be on the PCB that the module lives on. Close examination with the help of some magnification revealed the culprit — tin whiskers had formed, stretching out from a pad to chassis ground. The tiny metal threads were shorting the signal to ground whenever the 4x module was switched into the signal path. The solution? A quick flick with a sticky note to remove the whiskers!

This was a great fix and a fantastic lesson in looking past the obvious and being observant. It puts us in the mood for breaking out our old Tek scope and seeing what wonders — and challenges — it holds.

Open Cardiography Signal Measuring Device

A light grey box about the size of a brick with exposed screws held in a person's hand. There are two illuminated push buttons on the bottom left of the top panel. One is illuminated blue while the other is green. A small square screen sits next to a bank of nine different sections with an LED indicator and text of "HW, BAT, HBEAT, ECG, LOD +, LOD -, PPG, Pump, Valve."

Much of the world’s medical equipment is made by a handful of monopolistic megacorps, but [Milos Rasic] built an open cardiography signal measuring device for his master’s thesis.

Using a Pi Pico W for the brains, [Rasic]’s device can record, store and analyze the data from an arm cuff, stethoscope, electrocardiograph (ECG), and pulse oximeter. This data can be used for monitoring blood pressure in patients and he has results from some of his experiments to determine the optimal algorithm for the task on the GitHub if you really want to get into the nitty gritty details.

Inside the brick-sized enclosure is the custom PCB, an 18650 Li-ion cell, and a pneumatic assembly for the arm cuff. Medical sensors attach via GX12 connectors on the back, a USB type B connector is used for data, and a USB C connector provides power for the device. The brightly colored labels will no doubt come in handy in a clinical setting where you really want to be sure you’ve got everything plugged in correctly.

Want more open medical equipment? How about an open ECG or this less accurate, but more portable, credit card ECG? We’d be remiss not to mention the huge amount of work on ventilators during the worst days of the COVID-19 pandemic as well.

Component Tester Teardown

In the modern age, when you hear “component tester” you probably think of one of those cheap microcontroller-based devices that can identify components and provide basic measurements on an LCD screen. However, in the past, these were usually simple circuits that generated an XY scope plot. The trace would allow an experienced operator to identify components and read a few key parameters. [Thomas] tears down an old Hameg device that uses this principle in the video below.

The unit is in a nice enclosure and has a feature that controls the amount of current the unit uses in the excitation signal. It plugs into the wall, and you can connect the component under test with either test leads or a socket. The output, of course, is a pair of BNCs for the scope’s X and Y inputs.

Compared to some homebrew projects that are similar, the PCB inside the device seems more complex. The output of most devices like this uses the line frequency (50 or 60 Hz). This one, however, has its own drive oscillator that operates at a different frequency.

Each type of component has a tell-tale trace on the scope. We found the tunnel diode trace especially interesting. Capacitors are circles, diodes make a definite step shape. There’s a table from the manual near the end of the video.

Most of these devices are much simpler, using a transformer to generate the AC sweep and a simple mechanism to measure the current. That makes them quite easy to build and they are still surprisingly useful.

Combining Gyro Stabilisation With Weight Shift Balancing

Gyroscopes are perfect to damper short impulses of external forces but will eventually succumb if a constant force, like gravity, is applied. Once the axis of rotation of the mass aligns with the axis of the external torque, it goes into the gimbal lock and loses the ability to compensate for the roll on that axis. [Hyperspace Pirate] tackled this challenge on a gyroscopically stabilized RC bike by shifting a weight around to help keep the bike upright.

[Hyperspace Pirate] had previously stabilized a little monorail train with a pair of control moment gyroscopes. They work by actively adjusting the tilt of gyroscopes with a servo to apply a stabilizing torque. On this bike, he decided to use the gyro as a passive roll damper, allowing it to rotate freely on the pitch axis. The bike will still fall over but at a much slower rate, and it buys time for a mass on the end of the servo-actuated arm to shift to the side. This provides a corrective torque and prevents gimbal lock.

[Hyperspace Pirate] does an excellent job of explaining the math and control theory behind the system. He implemented a PD-controller (PID without the integral) on an Arduino, which receives the roll angle (proportional) from the accelerometer on an MPU6050 MEMS sensor and the roll rate (Derivative) from a potentiometer that measures the gyro’s tilt angle. He could have just used the gyroscope output from the MPU6050, but we applaud him for using the actual gyro as a sensor.

Like [Hyperspace Pirate]’s other projects, aesthetics were not a consideration. Instead, he wants to experiment with the idea and learn a few things in the process, which we can support.

Signal Processing Shenanigans: The Createc SC 01 Pocket Oscilloscope

If you’re passionate about signal processing and retro tech, you’ll want to check out the Createc SC 01, a quirky handheld oscilloscope that recently caught the eye of [Thomas Scherrer] from OZ2CPU Teardown. This device, cheekily dubbed a “signal computer,” promises to be both intriguing and, perhaps, frustrating. You can view [Thomas]’ original teardown video here.

This device is packed with buttons and a surprisingly retro aesthetic that can make even the most seasoned hacker feel nostalgic. With a sample rate of 20 MHz and a bandwidth of up to 10 MHz, it’s a digital oscilloscope with a twist. Users may find its setup challenging, thanks to a somewhat convoluted manual that boasts numerous errors. However, beneath the confusion lies the potential for creative exploration: this signal computer can analyse analog signals, perform calculations, and even store data.

Despite its quirks, the SC 01 is sure the experience. Imagine troubleshooting a circuit while grappling with its unpredictable user interface—an adventure in itself for those who like a techy challenge.

The Createc SC 01 is not just another tool; it’s an invitation to embrace the imperfections of vintage tech. If you enjoy the hands-on learning process and don’t shy away from a few hiccups, this device might be something you’ll enjoy. Hackaday featured an article on similar devices last year. Check out the full teardown video to see this fancy but quirky pocket oscilloscope in action.

Zeroscope

Zeroscope is a free and open-source software that uses text-to-video technology to convert written descriptions into high-quality videos. It is an improved version of Modelscope, offering better resolution, no watermarks, and a closer aspect ratio to 16:9. Zeroscope Text-to-Video is available as a demo on HuggingFace, however, it’s very popular right now so you might […]

Source

❌