Vista de Lectura

Hay nuevos artículos disponibles. Pincha para refrescar la página.

Uncanny Valley of Clean Conquered by Clever Chair

A woman in a dark green shirt and grey jeans holds a set of cinnamon pants. She is standing next to a burnt orange cushioned and backed-chair. The arm rests, legs, and outer circular rack are a blonde wood. It looks somewhat mid-century modern. A number of differently-colored clothes line the wall in the background.

Do you ever have clothes that you only wore for a few hours, so you don’t want to wash them, but it still seems icky to put them back in the drawer or closet? What if you had a dedicated place to put them instead of on your floor or piled on a chair in the corner? [Simone Giertz] has a tidier solution for you.

On top of the quasi-dirty clothing conundrum, [Giertz]’s small space means she wanted to come up with a functional, yet attractive way to wrangle these clothes. By combining the time-honored tradition of hanging clothes on the back of a chair and the space-saving efficiency of a Lazy Susan, she was able to create a chair with a rotating rack to tuck the clothes out of the way when not wearing them.

The circular rack attached to the chair orbits around a circular seat and arm rests allowing clothes to be deposited on the chair from the front and conveniently pushed to the back so they remain out of sight and out of mind until you need them. The hardware chosen seems to be pretty strong as well given the number of items placed on the rail during the demonstration portion of the video. We also really like how [Giertz] challenged herself to “CAD celibacy” for the duration of the build to try to build it quick.

If you want to see some other clever furniture hacks, how about repurposing the seats from an old subway, or hacking IKEA furniture to be more accessible?

Creating a Signature Wood Joint

A pair of hands hold two dark brown boards perpendicular two each other on a light brown benchtop. There are two light brown oval dowels in the end of one board that then project toward holes in the opposite board. Circular holes in the oval dowels are visible perpendicular to the second board, and will match up with holes in the board once pressed in. A cylindrical dowel is laying next to the joint and will be placed into the circular holes once assembled.

We really love when makers make their construction techniques evident in an aesthetically-pleasing way, and [Laura Kampf] has created a clever joint that reveals how a piece is made.

[Kampf] is a big fan of using her domino joiner, which is similar to biscuits or dowel joinery, but she didn’t love how it hid the construction of the joint. She first figured out an “off label” use of the joiner by running it from the outside of the joint to show the exposed domino from one end.

Building on the concept to show an interesting contrast on both sides of the joint, she drilled a hole perpendicular the domino and placed a dowel through it, creating a locking joint. The choice looks great once a finish is applied to really accentuate the contrast, and another bonus is that if glue is only applied to the dowel and domino, it becomes trivial to separate the joint if needed by drilling out the dowel.

If you’d like to see some other interesting ways to join wood, how about this laser-cut wedge tenon, soda bottle heat shrink, or this collection of CNC joints.

Upgrading the M4 Mac Mini with More Storage

A hand holds a small PCB with an edge connector over the exposed, mostly black components of an M4 Mac mini. The bottom cover is hanging by an FFC cable off to the left of the

Apple’s in-house chips have some impressive specs, but user serviceability is something Apple left behind for consumer machines around a decade ago. Repair legend [dosdude1] shows us how the new M4 Mac mini can get a sizeable storage upgrade without paying the Apple tax.

The Mac mini is Apple’s least expensive machine, and in the old days you could swap a SATA drive for more storage and not pay the exorbitant prices that OEMs demand. Never one to turn down a walled garden, later Intel machines and now the ARM-based M-series chips soldered storage into the machine leaving an upgrade out of the hands of anyone without a hot air station.

Both the Mac Studio and Mac mini now have proprietary storage cards, and after some tinkering, [dosdude1] has successfully upgraded the storage on the base model M4 mini. While most people don’t casually reball NAND chips while chatting on a video, his previous work with others in the space to make a Mac Studio upgrade kit give us hope we’ll soon see economical storage upgrades that keep the Mac mini affordable.

We’ve previously covered the first time Apple tried to make its own processors, and some of their more recent attempts at repairability.

Making a Stool from Clay

A brown sphere with a flat top, a nose and circular eyes sits on the ground surrounded by low vegetation. A wooden fence is behind it.

We’ve seen furniture made out of all sorts of interesting materials here, but clay certainly isn’t the first one that comes to mind. [Mia Mueller] is expanding our horizons with this clay stool she made for her garden.

Starting with an out-of-budget inspiration piece, [Mueller] put her own spin on a ceramic stool that looks like a whimsical human head. An experienced potter, she shows us several neat techniques for working with larger pieces throughout the video. Her clay extruder certainly beats making coils by hand like we did in art class growing up! Leaving the coils wrapped in a tarp allows her to batch the process coils and leave them for several days without worrying about them drying out.

Dealing with the space constraints of her small kiln, her design is a departure from the small scale prototype, but seeing how she works through the problems is what really draws us to projects like this in the first place. If it was easy, it wouldn’t be making, would it? The final result is a beautiful addition to her garden and should last a long time since it won’t rot or rust.

If you’re thinking of clay as a medium, we have some other projects you might enjoy like this computer mouse, 3D printing with clay, or a clay battery.

Uncle Sam Wants You to Recover Energy Materials from Wastewater

Stylized silver text with the the word: "arpa-e" over the further text: "Changing What's Possible"

The U.S. Department of Energy’s (DOE) Advanced Research Projects Agency-Energy (ARPA-E) was founded to support moonshot projects in the realm of energy, with a portfolio that ranges from the edge of current capabilities to some pretty far out stuff. We’re not sure exactly where their newest “Notice of Funding Opportunity (NOFO)” falls, but they’re looking for critical materials from the wastewater treatment process. [via CleanTechnica]

As a refresher, critical materials are those things that are bottlenecks in a supply chain that you don’t want to be sourcing from unfriendly regions. For the electrification of transportation and industrial processes required to lower carbon emissions, lithium, cobalt, and other rare earth elements are pretty high on the list.

ARPA-E also has an interest in ammonia-based products which is particularly interesting as industrial fertilizers can wreak havoc on natural ecosystems when they become run off instead of making it into the soil. As any farmer knows, inputs cost money, so finding an economical way to recover those products from wastewater would be a win-win. “For all categories, the final recovered products will need to include at least two targeted high energy-value materials, have greater than 90% recovery efficiency, and be commercially viable in the U.S. market.” If that sounds like the sort of thing you’d like to try hacking on, consider filling out an Applicant Profile.

If you’re curious about where we’re getting some of these materials from right now, checkout our series on Mining and Refining, including the lithium and cobalt ARPA-E wants more of.

Hacking Trees to Bring Back the American Chestnut

A researcher in a safety harness pollinates an American chestnut tree from a lift. Another researcher is on the other side of the lift and appears to be taking notes. The tree has bags over some of its branches, presumably to control the pollen that gets in. The lift has a grey platform and orange arm.

“Chestnuts Roasting on an Open Fire” is playing on the radio now in the Northern Hemisphere which begs the question, “What happened to the American chestnut?” Would you be surprised to hear there’s a group dedicated to bringing it back from “functional extinction?” [via Inhabitat]

Between logging and the introduction of chestnut blight, the once prevalent American chestnut became increasingly uncommon throughout its traditional range in the Appalachians. While many trees in the southern range were killed by Phytophthora root rot (PRR), the chestnut blight leaves roots intact, so many chestnuts have been surviving by growing back from the roots only to succumb to the blight and be reborn again. Now, scientists are using a combination of techniques to develop blight-resistant trees from this remaining population.

The American Chestnut Foundation recognizes you can’t improve what you can’t measure and uses a combination of “small stem assays (SSAs) performed on potted seedlings, improved phenotype scoring methods for field-grown trees, and the use of genomic prediction models for scoring resistance based on genotype.” This allows them to more rapidly screen varieties for blight resistance to further their efforts. One approach is based on conventional plant breeding techniques and has been crossing blight and PRR-resistant Chinese chestnuts with the American type. PRR resistance has been found to be less genetically complicated, so progress has been faster on resistance to that particular problem.

Research is also ongoing on transgenic solutions to both the blight and PRR. Initial experiments using a wheat gene had mixed results, but researchers hope to develop a version that can be expressed in more nuanced conditions like when a tree is more susceptible to infection. This could prevent or reduce some of the negative affects of the transgenic hack like increased tree mortality and metabolic costs with always producing the oxalate oxidase enzyme that interferes with the blight toxin.

If we’re tinkering with genomes anyway, maybe boosting the American chestnut’s photosynthetic efficiency isn’t out of the question? If you’re more interested in making insulin or combating mosquito-borne diseases, there’s a biohack for that too.

US Is Getting Its First Onshore Wave Power Plant

Waves crash near a rocky shore. Large, SUV-sized blue "floaters" sit in the water perpendicular to a concrete pier. The floaters look somewhat like a bass boat shrink wrapped in dark blue plastic and attached to a large piston and hinge. A grey SUV sits on the pier, almost as if for scale.

Renewables let you have a more diverse set of energy inputs so you aren’t putting all your generation eggs in one basket. One type of renewable that doesn’t see a lot of love, despite 80% of the world’s population living within 100 km (~60 mi) of a coastline, is harnessing the energy of the tides. [via Electrek]

“The U.S. Department of Energy’s National Renewable Energy Laboratory estimates that wave energy has the potential to generate over 1,400 terawatt-hours per year,” so while this initial project won’t be huge, the overall possible power generation from tidal power is nothing to sneeze at. Known more for its role in shipping fossil fuels, the Port of Los Angeles will host the new wave power pilot being built by Eco Wave Power and Shell. Eco Wave’s system uses floaters to drive pistons that compress hydraulic fluid and turn a generator before the decompressed fluid is returned to the pistons in a nice, tidy loop.

Eco Wave plans to finish construction by early 2025 and already has the power conversion unit onsite at the Port of Los Angeles. While the press release is mum on the planned install capacity, Eco Wave claims they will soon have 404.7 MW of installed capacity through several different pilot projects around the world.

We covered another Swiss company trying to harness tidal power with underwater kites, and if wave power isn’t your thing but you still like mixing water and electricity, why not try offshore wind or a floating solar farm? Just make sure to keep the noise down!

❌