Vista de Lectura

Hay nuevos artículos disponibles. Pincha para refrescar la página.

A Pi Pico Makes A Spectrum Laptop

There are many retrocomputer emulation projects out there, and given the relative fragility of the original machines as they enter their fifth decade, emulation seems to be the most common way to play 8-bit games. It’s easy enough to load one on your modern computer, but there are plenty of hardware options, too. “The computer we’d have done anything for back in 1983” seems to be a phrase many of them bring to mind, but it’s so appropriate because they keep getting better. Take [Stormbytes1970]’s Pi Pico-powered Sinclair ZX Spectrum mini laptop (Spanish language, Google Translate link), for example. It’s a slightly chunky netbook that’s a ZX Spectrum, and it has a far better keyboard than the original.

On the PCB is the Pico, the power supply circuitry, an SD card, and a speaker. But it’s when the board is flipped over that the interesting stuff starts. In place of the squidgy rubber keyboard of yore, it has a proper keyboard,. We’re not entirely sure which switch it uses, but it appears to be a decent one, nevertheless. The enclosure is a slick 3D-printed sub-netbook for retro gaming on the go. Sadly, it won’t edit Hackaday, so we won’t be slipping one in the pack next time we go on the road, but we like it a lot.

It’s not the first Spectrum laptop we’ve covered, but we think it has upped the ante over the last one. If you just want the Spectrum’s BASIC language experience, you can try a modern version that runs natively on your PC.

Fixing 1986 Sinclair Spectrum+2 With a High-Score of Issues

The Sinclair ZX Spectrum+2 was the first home computer released by Amstrad after buying up Sinclair. It’s basically a Sinclair ZX Spectrum 128, but with a proper keyboard and a built-in tape drive. The one that [Mark] of the Mend it Mark YouTube channel got in for repair is however very much dead. Upon first inspection of the PCB, it was obvious that someone had been in there before, replacing the 7805 voltage regulator and some work on other parts as well, which was promising. After what seemed like an easy fix with a broken joint on the 9 VDC input jack, the video output was however garbled, leading to the real fault analysis.

Fortunately these systems have full schematics available, allowing for easy probing on the address and data lines. Based on this the Z80 CPU was swapped out to eliminate a range of possibilities, but this changed nothing with the symptoms, and a diagnostic ROM cartridge didn’t even boot. Replacing a DS74LS157 multiplexer and trying different RAM chips also made no difference. This still left an array of options on what could be wrong.

Tracking down one short with an IC seemed to be a break, but the video output remained garbled, leaving the exciting possibility of multiple faults remaining. This pattern continues for most of the rest of the video, as through a slow process of elimination the bugs are all hunted down and eliminated, leaving a revived Spectrum+2 (and working tape drive) in its wake, as well as the realization that even with all through-hole parts and full schematics, troubleshooting can still be a royal pain.

❌