Vista de Lectura

Hay nuevos artículos disponibles. Pincha para refrescar la página.

Math, Optimized: Sweden’s Maximal Multi-Divi

Multi-Divi book with hand thumbing through it

Back in the early 1900s, before calculators lived in our pockets, crunching numbers was painstaking work. Adding machines existed, but they weren’t exactly convenient nor cheap. Enter Wilken Wilkenson and his Maximal Multi-Divi, a massive multiplication and division table that turned math into an industrialized process. Originally published in Sweden in the 1910’s, and refined over decades, his book was more than a reference. It was a modular calculating instrument, optimized for speed and efficiency. In this video, [Chris Staecker] tells all about this fascinating relic.

What makes the Multi-Divi special isn’t just its sheer size – handling up to 9995 × 995 multiplications – but its clever design. Wilkenson formatted the book like a machine, with modular sections that could be swapped out for different models. If you needed an expanded range, you could just swap in an extra 200 pages. To sell it internationally, just replace the insert – no translation needed. The book itself contains zero words, only numbers. Even the marketing pushed this as a serious calculating device, rather than just another dusty math bible.

While pinwheel machines and comptometers were available at the time, they required training and upkeep. The Multi-Divi, in contrast, required zero learning curve – just look up the numbers for instant result. And it wasn’t just multiplication: the book also handled division in reverse, plus compound interest, square roots, and even amortizations. Wilkenson effectively created a pre-digital computing tool, a kind of pocket calculator on steroids (if pockets were the size of briefcases).

Of course, no self-respecting hacker would take claims of ‘the greatest invention ever’ at face value. Wilkenson’s marketing, while grandiose, wasn’t entirely wrong – the Multi-Divi outpaced mechanical calculators in speed tests. And if you’re feeling adventurous, [Chris] has scanned the entire book, so you can try it yourself.

DataSaab: Sweden’s Lesser-Known History in Computing

DataSaab mainframe

Did you know that the land of flat-pack furniture and Saab automobiles played a serious role in the development of minicomputers, the forerunners of our home computers? If not, read on for a bit of history. You can also go ahead and watch the video below, which tells it all with a ton of dug up visuals.

Sweden’s early computer development was marked by significant milestones, beginning with the relay-based Binär Aritmetisk Relä-Kalkylator (BARK) in 1950, followed by the vacuum tube-based Binär Elektronisk SekvensKalkylator (BESK) in 1953. These projects were spearheaded by the Swedish Board for Computing Machinery (Matematikmaskinnämnden), established in 1948 to advance the nation’s computing capabilities.

In 1954, Saab ventured into computing by obtaining a license to replicate BESK, resulting in the creation of Saab’s räkneautomat (SARA). This initiative aimed to support complex calculations for the Saab 37 Viggen jet fighter. Building on this foundation, Saab’s computer division, later known as Datasaab, developed the D2 in 1960 – a transistorized prototype intended for aircraft navigation. The D2’s success led to the CK37 navigational computer, which was integrated into the Viggen aircraft in 1971.

Datasaab also expanded into the commercial sector with the D21 in 1962, producing approximately 30 units for various international clients. Subsequent models, including the D22, D220, D23, D5, D15, and D16, were developed to meet diverse computing needs. In 1971, Datasaab’s technologies merged with Standard Radio & Telefon AB (SRT) to form Stansaab AS, focusing on real-time data systems for commercial and aviation applications. This entity eventually evolved into Datasaab AB in 1978, which was later acquired by Ericsson in 1981, becoming part of Ericsson Information Systems.

Parallel to these developments, Åtvidabergs Industrier AB (later Facit) produced the FACIT EDB in 1957, based on BESK’s design. This marked Sweden’s first fully domestically produced computer, with improvements such as expanded magnetic-core memory and advanced magnetic tape storage. The FACIT EDB was utilized for various applications, including meteorological calculations and other scientific computations. For a short time, Saab even partnered with the American Unisys called Saab-Univac – a well-known name in computer history.

These pioneering efforts by Swedish organizations laid the groundwork for the country’s advancements in computing technology, influencing both military and commercial sectors. The video below has lots and lots more to unpack and goes into greater detail on collaborations and (missed) deals with great names in history.

❌