In the relatively short time that the James Webb Space Telescope has been operational, there’s seemingly no end to its list of accomplishments. And if you’re like us, you were sure that Webb had already achieved the first direct imaging of a planet orbiting a star other than our own a long time ago. But as it turns out, Webb has only recently knocked that item off its bucket list, with the direct visualization of a Saturn-like planet orbiting a nearby star known somewhat antiseptically as TWA 7, about 111 light-years away in the constellation Antlia. The star has a significant disk of debris orbiting around it, and using the coronagraph on Webb’s MIRI instrument, astronomers were able to blot out the glare of the star and collect data from just the dust. This revealed a faint infrared source near the star that appeared to be clearing a path through the dust.
The planet, dubbed TWA 7b, orbits its star at about 50 times the distance from Earth to the Sun and is approximately the size of Saturn, but only a third of its mass. The star itself is only about 6.4 million years old, so the planet may still be accreting from the debris disk, which might present interesting insights into planetary formation, assuming that other astronomers confirm that TWA 7b is indeed a planet. But what’s really interesting about this discovery is that because the star system’s orbital plane appears to be more or less perpendicular to ours, the standard exoplanet detection method based on measuring the dimming of the star by planets passing between it and us wouldn’t have worked. This might open the doors to the discovery of many more exoplanets, and that’s pretty exciting.
Question: What’s worse than a big space rock that’s on a collision course with Earth? Answer: Honestly, it feels like a lot of things would be worse than that right now. But if your goal is planetary protection, one possible answer is doing something that turns the one big rock into a lot of little rocks. That seems to be just what NASA’s DART mission did when it smashed into a bit of space debris named Dimorphos back in 2022, ejecting over 100 boulders from the asteroid-orbiting moonlet. LICIAcube, an Italian cubesat that hitched a ride on DART, used optical cameras to observe the ejecta, and measured rocks from 0.2 m to 3.6 m in diameter as they yeeted off at up to 52 meters per second. Rather than spreading out randomly, the boulders clustered into two different groups, something that years of playing Asteroids has taught us isn’t what you’d expect. The whole thing just goes to show that planetary protection isn’t as simple as blasting into a killer asteroid and hoping for the best. And please, can somebody out there type “NASA DART” into Google and tell me what they see? Because if it’s not an animated spacecraft zipping across the screen and knocking the window out of kilter, then I need a vacation. K, thanks.
Do you even code? If you’re reading Hackaday, chances are good that you at least know enough coding to get yourself into trouble. But if you don’t, or you want to ruin somebody else’s life bring someone new into the wonderful world of bossing computers around, take a look at Micro Adventure, an online adventure game aimed at teaching you the basics — err, BASICs — of coding. The game walks you through a text-based RPG (“You’re in a dark room…”) and prompts you to code your way through to a solution. The game has an emulator window that appears to be based on MS/DOS 1.00, so you know it’s cutting-edge stuff. To be fair, it’s always been our experience that coding is mostly about concepts, and once you learn what a loop is or how to branch in one language, figuring it out in another language is just about syntax. There seem to be at least six different adventures planned, so perhaps other languages will make an appearance in the future.
And finally, while we’re talking about the gamification of nerd education, if you’ve been meaning to learn Morse code, you might want to check out Morse Code Defender. It’s an Android app that uses a Missile Command motif to help you learn Morse, with attacking missiles having a character attached to them, and you having to enter the correct Morse code to blow the missile up before it takes out your ham shack. We haven’t tried it yet, so there may be more to it, but it sure seems like a cute way to gamify the Morse learning process. Honestly, it’s got to be better than doomscrolling Instagram.
So far in the “Field Guide” series, we’ve mainly looked at critical infrastructure systems that, while often blending into the scenery, are easily observable once you know where to look. From the substations, transmission lines, and local distribution systems that make up the electrical grid to cell towers and even weigh stations, most of what we’ve covered so far are mega-scale engineering projects that are critical to modern life, each of which you can get a good look at while you’re tooling down the road in a car.
This time around, though, we’re going to switch things up a bit and discuss a less-obvious but vitally important infrastructure system: the cold chain. While you might never have heard the term, you’ve certainly seen most of the major components at one time or another, and if you’ve ever enjoyed fresh fruit in the dead of winter or microwaved a frozen burrito for dinner, you’ve taken advantage of a globe-spanning system that makes sure environmentally sensitive products can be safely stored and transported.
What’s A Cold Chain?
Simply put, the cold chain is a supply chain that’s capable of handling items that are likely to be damaged or destroyed unless they’re kept within a specific temperature range. The bulk of the cold chain is devoted to products intended for human consumption, mainly food but also pharmaceuticals and vaccines. Certain non-consumables also fall under the cold chain umbrella, including cosmetics, personal care products, and even things like cut flowers and vegetable seedlings. We’ll be mainly looking at the food cold chain for this article, though, since it uses most of the major components of a cold chain.
As the name implies, the cold chain is designed to maintain a fixed temperature over the entire life of a product. “Farm to fork” is a term often used to describe the cold chain, since the moment produce is harvested or prepared foods are manufactured, the clock starts ticking. The exact temperature required varies by food type. Many fruits and vegetables that ripen in the summer or early autumn can stand pretty high temperatures, at least for a while after harvesting, but some produce, like lettuces and fresh greens, will start wilting very quickly after harvest.
For extremely sensitive crops, the cold chain might start almost the second the crop is harvested. Highly perishable crops such as sweet corn, greens, asparagus, and peas require rapid cooling to remove field heat and to slow the biological processes that were still occurring within the plant tissues at the time of harvest. This is often accomplished right in the field with a hydrocooler, which uses showers or flumes of chilled water. Extremely perishable crops such as broccoli might even be placed directly into flaked ice in the field. Other, less-sensitive crops that can wait an hour or two will enter the cold chain only when they’re trucked a short distance to an initial processing plant.
Many foods, including different kinds of produce, fresh meat and fish, and lots of prepared meals, benefit from flash freezing. Flash freezing aims to reduce damage to the food by controlling the size and number of ice crystals that form within the cells of the plant or animal tissue. Simply putting a food item in a freezer and waiting for the heat to passively transfer out of it tends to form few but large ice crystals, which are far more damaging than the many tiny ice crystals that form when the heat is rapidly removed. Flash freezing methods include cryogenic baths using liquid nitrogen or liquid carbon dioxide, blast cooling with high-velocity jets of chilled air, fluidized bed cooling, where pressurized chilled air is directed upward through a bed of produce while it’s being agitated, and plate cooling, where chilled metal plates lightly contact flat, thin foods such as pizza or sliced fish.
Big and Cold
A very large public refrigerated warehouse. Note the high-bay storage area to the left, which houses a fully automated AS/RS freezer section. Source: Lineage Logistics.
Once food is chilled to the proper temperature, it needs to be kept at that temperature until it can be sold. This is where cold warehousing comes in, an important part of the cold chain that provides controlled-temperature storage space that individual producers simply can’t afford to maintain. The problem for farmers is that many crops are determinate, meaning that all the fruits or vegetables are ready for harvest more or less at the same time. Outsourcing their cold warehousing to companies that specialize in that part of the cold chain allows them to concentrate on growing and harvesting their crop instead of having to maintain a huge amount of storage space, which would sit unused for the entire growing season.
Cold warehouses, or public refrigerated warehouses (PRWs) as they’re known in the trade, benefit greatly from economies of scale, and since they accept produce from hundreds or even thousands of producers, their physical footprints can be staggering. The average PRW in the United States has grown in size dramatically since the post-pandemic e-commerce boom and now covers almost 185,000 square feet, or more than 4 acres. Most PRWs have four temperature zones: deep freeze (-20°F to -10°F) for items such as ice cream and frozen vegetables; freezer (0°F to 10°F) for meats and prepared foods; refrigerated (35°F to 45°F), for fresh fruits and vegetables; and cool storage, which is basically just consistent room-temperature storage for shelf-stable food items. What’s more, each zone can have sub-zones tailored specifically for foods that prefer a specific temperature; bananas, for example, do best around 46°F, making the fridge section too cold and the cool section too warm. Sub-zones allow goods to be stored just right.
A map of some of the key public refrigerated warehouses in the United States. Notice how there are practically none in the areas that raise primarily cereal grains. Source: map via ArcGIS, data from Global Cold Chain Alliance (public use).
Due to the nature of their business, location is critical to PRWs. They have to be close to where the food is produced as well as handy to transportation hubs, which means you’ve probably seen one of these behemoth buildings from a highway and not even known it. The map above highlights the main agricultural regions of the United States, such as the fruit and vegetable producers in the Central Valley of California and the Willamette Valley in Oregon, meat packing plants in the Upper Midwest, the hog and chicken producers in the South, and seafood producers along both coasts. It also shows a couple of areas with no PRWs, which are areas where agriculture is limited to cereal grains, which don’t require refrigeration after harvest, and livestock, which are usually shipped for slaughter somewhere other than where they were raised.
Thanks to the complicated logistics of managing multiple shippers and receivers, most cold warehouses have a level of automation that rivals that of an Amazon distribution center. A lot of the automation is found in the high-bay freezer, a space often three or four stories tall that has rack after rack of space for storing palletized products. Automated storage and retrieval systems (AS/RS) store and fetch pallets using large X-Y gantry systems running between the racks. Algorithms determine the best storage location for pallets based on their contents, the temperature regime they require, and the predicted length of stay within the warehouse.
While AS/RS reduces the number of workers needed to run a cold warehouse, and there are some fully automated PRWs, most cold warehouses maintain a large workforce to run forklifts, pick pallets, and assemble orders for shipping. These workers face significant health and safety challenges, risking everything from slips and falls on icy patches to trench foot and chill-induced arthritis and dermatitis. Cold-stress injuries, such as hypothermia and frostbite, are possible too. Warehouses often have to limit the number of hours their employees work in the cold zones, and they have to provide thermal wear along with the standard complement of PPE.
Reefer Madness
Once an order is assembled and ready to ship from the cold warehouse, food enters perhaps the most visible — and riskiest — link in the cold chain: refrigerated trucks and shipping containers. Known as reefers, these are specialized vehicles that have the difficult task of keeping their contents at a constant temperature no matter what the outside conditions might be. A reefer might have to deliver a load of table grapes from a PRW in California to a supermarket distribution center in Massachusetts, continue to Maine to pick up a load of live lobsters, and drop that off at a PRW in Florida before running a load of oranges to Washington.
Reefer trailers are one of the last links in the “farm to fork” cold chain. The diesel tank, which fuels the reefer and allows it to run with no tractor attached, can barely be seen between the legs of the trailer. Source: Felix Mizioznikov – stock.adobe.com
Meeting the challenge of all these conditions is the job of the refrigeration unit. Typically mounted in an aerodynamic fairing on the front of a semi-trailer unit, the refrigeration unit is essentially a heat pump on steroids. For over-the-road (OTR) reefers, as opposed to railcar reefers or shipping container reefers, the refrigeration unit is powered by a small but powerful diesel engine. Typically either three- or four-cylinder engines making 20 to 30 horsepower, these engines run the compressor that pumps the refrigerant through the condenser and evaporator, as well as the powerful fan that circulates air inside the trailer. Fuel for the engine is stored in a tank mounted under the trailer, allowing the reefer to run even when the trailer is parked with no tractor attached. The refrigeration unit is completely automatic, with a computer taking input from temperature sensors inside the trailer to make sure the interior remains at the setpoint. The computer also logs everything going on in the reefer, making the data available via a USB drive or to a central dispatcher via a telematics link.
The trailer body itself is carefully engineered, with thick insulation to minimize heat transfer to and from the outside environment while maximizing heat transfer between the produce and the air inside the trailer. For maximum cooling — or heating; if a load of bananas has to be kept at their happy place of 46°F while being trucked across eastern Wyoming in January, the refrigeration unit will probably have to run its cycle in reverse to add heat to the trailer — the air must reach the back of the unit. Reefer units use flexible ducts in the ceiling to direct the air 48 to 53 feet to the very back of the trailer, where it bounces off the rear doors and returns to the front of the trailer with the help of channels built into the floor. Shippers need to be careful when loading a reefer to obey load height limits and to correctly orient pallets so as not to block air circulation inside the trailer.
In addition to the data logging provided by the refrigeration unit, shippers will often include temperature loggers inside their shipments. Known generically to produce truckers as a “Ryan” for a popular brand, these analog strip chart recorders use a battery-powered motor to move a strip of paper past a bimetallic arm. Placed in a tamper-evident container, the recorder is placed within a pallet and records the temperature over a 10- to 40-day period. The receiver can break the seal open and see a complete temperature history of the shipment, detecting any accidental (or intentional; drivers sometimes find it hard to sleep with the reefer motor roaring right behind the sleeper cab) interruptions in the operation of the reefer.
There are a lot of benefits to writing for Hackaday, but hands down one of the best is getting paid to fall down fascinating rabbit holes. These often — but not always — delightful journeys generally start with chance comments by readers, conversations with fellow writers, or just the random largesse of The Algorithm. Once steered in the right direction, a few mouse clicks are all it takes for the properly prepared mind to lose a few hours chasing down an interesting tale.
I’d like to say that’s exactly how this article came to be, but to be honest, I have no idea where I first heard about the prison camp lathe. I only know that I had a link to a PDF of an article written in 1949, and that was enough to get me going. It was probably a thread I shouldn’t have tugged on, but I’m glad I did because it unraveled into a story not only of mechanical engineering chops winning the day under difficult circumstances, but also of how ingenuity and determination can come together to make the unbearable a little less trying, and how social engineering is an important a skill if you want to survive the unsurvivable.
Finding Reggie
For as interesting a story as this is, source material is hard to come by. Searches for “prison camp lathe” all seem to point back to a single document written by one “R. Bradley, A.M.I.C.E” in 1949, describing the building of the lathe. The story, which has been published multiple times in various forms over the ensuing eight decades, is a fascinating read that’s naturally heavy on engineering details, given the subject matter and target audience. But one suspects there’s a lot more to the story, especially from the few tantalizing details of the exploits surrounding the tool’s creation that R. Bradley floats.
Tracking down more information about Bradley’s wartime experiences proved difficult, but not impossible. Thankfully, the United Kingdom’s National Archives Department has an immense trove of information from World War II, including a catalog of the index cards used by the Japanese Empire to keep track of captured Allied personnel. The cards are little more than “name, rank, and serial number” affairs, but that was enough to track down a prisoner named Reginald Bradley:
Now, it’s true that Reginald Bradley is an extremely British name, and probably common enough that this wasn’t the only Reggie Bradley serving in the Far East theater in World War II. And while the date of capture, 15 February 1942, agrees with the date listed in the lathe article, it also happens to be the date of the Fall of Singapore, the end of a seven-day battle between Allied (mainly British) forces and the Japanese Imperial Army and Navy that resulted in the loss of the island city-state. About 80,000 Allied troops were captured that day, increasing the odds of confusing this Reginald Bradley with the R. Bradley who wrote the article.
The clincher, though, is Reginald Bradley’s listed occupation on the prisoner card: “Chartered Civil Engineer.” Even better is the information captured in the remarks field, which shows that this prisoner is an Associate Member of the Institution of Civil Engineers, which agrees with the “A.C.I.M.E” abbreviation in the article’s byline. Add to that the fact that the rank of Captain in the Royal Artillery listed on the card agrees with the author’s description of himself, and it seems we have our man. (Note: it’s easy to fall into the genealogical rabbit hole at this point, especially with an address and mother’s name to work with. Trust me, though; that way lies madness. It’s enough that the index card pictured above cost me £25 to retrieve from one of the National Archive’s “trusted partner” sites.)
The Royal Society of Social Engineers
The first big question about Captain Bradley is how he managed to survive his term as a prisoner of the Japanese Empire, which, as a non-signatory to the various international conventions and agreements on the treatment of prisoners of war, was famed for its poor treatment of POWs. Especially egregious was the treatment of prisoners assigned to build the Burma Death Railway, an infrastructure project that claimed 45 lives for every mile of track built. Given that his intake card clearly states his civil engineering credentials with a specialty in highways and bridges, one would think he was an obvious choice to be sent out into the jungle.
Rather than suffering that fate, Captain Bradley was sent to the infamous prison camp that had been established in Singapore’s Changi Prison complex. While not pleasant, it was infinitely preferable to the trials of the jungle, but how Bradley avoided that fate is unclear, as he doesn’t mention the topic at all in his article. He does, however, relate a couple of anecdotes that suggest that bridges and highways weren’t his only engineering specialty. Captain Bradley clearly had some social engineering chops too, which seem to have served him in good stead during his internment.
Within the first year of his term, he and his fellow officers had stolen so many tools from their Japanese captors that it was beginning to be a problem to safely stash their booty. They solved the problem by chatting up a Japanese guard under the ruse of wanting to learn a little Japanese. After having the guard demonstrate some simple pictograms like “dog” and “tree,” they made the leap to requesting the symbol for “workshop.” Miraculously, the guard fell for it and showed them the proper strokes, which they copied to a board and hung outside the officer’s hut between guard changes. The new guard assumed the switch from hut to shop was legitimate, and the prisoners could finally lay out all their tools openly and acquire more.
Another bit of social engineering that Captain Bradley managed, and probably what spared him from railway work, was his reputation as a learned man with a wide variety of interests. This captured the attention of a Japanese general, who engaged the captain in long discussions on astronomy. Captain Bradley appears to have cultivated this relationship carefully, enough so that he felt free to gripe to the general about the poor state of the now officially sanctioned workshop, which had been moved to the camp’s hospital block. A care package of fresh tools and supplies, including drill bits, hacksaw blades, and a supply of aluminum rivets, which would prove invaluable, soon arrived. These joined their pilfered tool collection along with a small set of machines that were in the original hospital shop, which included a hand-operated bench drill, a forge, some vises, and crucially, a small lathe. This would prove vital in the efforts to come, but meanwhile, the shop’s twelve prisoner-machinists were put to work making things for the hospital, mainly surgical instruments and, sadly, prosthetic limbs.
The Purdon Joint
Australian POWs at the Changi camp sporting camp-made artificial legs, some with the so-called “Purdon Joint.” This picture was taken after liberation, which explains the high spirits. Source: Australian War Memorial, public domain.
In his article, Captain Bradley devotes curiously little space to descriptions of these prosthetics, especially since he suggests that his “link-motion” design was innovative enough that prisoners who had lost legs to infection, a common outcome even for small wounds given the poor nutrition and even poorer sanitation in the camps, were able to walk well enough that a surgeon in the camp, a British colonel, noted that “It is impossible to tell that the walker is minus a natural leg.” The lack of detail on the knee’s design might also be due to modesty, since other descriptions of these prostheses credit the design of the knee joint to Warrant Officer Arthur Henry Mason Purdon, who was interned at Changi during this period.
A number of examples of the prosthetic legs manufactured at “The Artificial Limb Factory,” as the shop was now dubbed, still exist in museum collections today. The consensus design seems to accommodate below-the-knee amputees with a leather and canvas strap for the thigh, a hinge to transfer most of the load from the lower leg to the thigh around the potentially compromised knee, a calf with a stump socket sculpted from aluminum, and a multi-piece foot carved from wood. The aluminum was often salvaged from downed aircraft, hammered into shape and riveted together. When the gifted supply of aluminum rivets was depleted, Bradley says that new ones were made on the lathe using copper harvested from heavy electrical cables in the camp.
A camp-made artificial leg, possibly worn by Private Stephen Gleeson. He lost his leg while working on the Burma Death Railway and may have worn this one in camp. Source: Australian War Memorial
It Takes a Lathe to Make a Lathe
While the Limb Factory was by now a going concern that produced items necessary to prisoners and captors alike, life in a prison camp is rarely fair, and the threat of the entire shop being dismantled at any moment weighed heavily on Captain Bradley and his colleagues. That’s what spurred the creation of the lathe detailed in Bradley’s paper — a lathe that the Japanese wouldn’t know about, and that was small enough to hide quickly, or even stuff into a pack and take on a forced march.
The paper goes into great detail on the construction of the lathe, which started with the procurement of a scrap of 3″ by 3″ steel bar. Cold chisels and drills were used to shape the metal before surfacing it on one of the other lathes using a fly cutter. Slides were similarly chipped from 1/2″ thick plate, and when a suitable piece of stock for the headstock couldn’t be found, one was cast from scrap aluminum using a sand mold in a flask made from sheet steel harvested from a barracks locker.
The completed Bradley prison camp lathe, with accessories. The lathe could be partially disassembled and stuffed into a rucksack at a moment’s notice. Sadly, the post-war whereabouts of the lathe are unknown. Source: A Small Lathe Built in a Japanese Prison Camp, by R. Bradley, AMICE.
Between his other shop duties and the rigors of prison life, Captain Bradley continued his surreptitious work on the lathe, and despite interruptions from camp relocations, was able to complete it in about 600 hours spread over six months. He developed ingenious ways to power the lathe using old dynamos and truck batteries. The lathe was used for general maintenance work in the shop, such as making taps and dies to replace worn and broken ones from the original gift of tools bequeathed by the Japanese general.
With the end of the war approaching, the lathe was put to use making the mechanical parts needed for prison camp radios, some of which were ingeniously hidden in wooden beams of the barracks or even within the leg of a small table. The prisoners used these sets to listen for escape and evasion orders from Allied command, or to just get any news of when their imprisonment might be over.
That day would come soon after the atomic bombing of Hiroshima and Nagasaki and Japan’s subsequent surrender in August 1945. The Changi prison camp was liberated about two weeks later, with the survivors returning first to military and later to civilian life. Warrant Officer Purdon, who was already in his 40s when he enlisted, was awarded a Distinguished Combat Medal for his courage during the Battle of Singapore. As for Captain Bradley, his trail goes cold after the war, and there don’t seem to be any publicly available pictures of him. He was decorated by King George VI after the war, though, “for gallant and distinguished service while a prisoner of war,” as were most other POWs. The award was well-earned, of course, but an understatement in the extreme for someone who did so much to lighten the load of his comrades in arms.
There’s interesting news out of Wyoming, where a coal mine was opened this week. But the fact that it’s the first new coal mine in 50 years isn’t the big news — it’s the mine’s abundance of rare earth elements that’s grabbing the headlines. As we’ve pointed out before, rare earth elements aren’t actually all that rare, they’re just widely distributed through the Earth’s crust, making them difficult to recover. But there are places where the concentration of rare earth metals like neodymium, dysprosium, scandium, and terbium is slightly higher than normal, making recovery a little less of a challenge. The Brook Mine outside of Sheridan, Wyoming is one such place, at least according to a Preliminary Economic Assessment performed by Ramaco Resources, the mining company that’s developing the deposit.
The PEA states that up to 1,200 tons of rare earth oxides will be produced a year, mainly from the “carbonaceous claystones and shales located above and below the coal seams.” That sounds like good news to us for a couple of reasons. First, clays and shales are relatively soft rocks, making it less energy- and time-intensive to recover massive amounts of raw material than it would be for harder rock types. But the fact that the rare earth elements aren’t locked inside the coal is what’s really exciting. If the REEs were in the coal itself, that would present something similar to the “gasoline problem” we’ve discussed before. Crude oil is a mixture of different hydrocarbons, so if you need one fraction, like diesel, but not another, like gasoline, perhaps because you’ve switched to electric vehicles, tough luck — the refining process still produces as much gasoline as the crude contains. In this case, it seems like the coal trapped between the REE-bearing layers is the primary economic driver for the mine, but if in the future the coal isn’t needed, the REEs could perhaps be harvested and the coal simply left behind to be buried in the ground whence it came.
Anyone old enough to remember the heyday of Heathkit probably can recall the glory that was their annual catalog. Second in importance in the geek calendar year only to the release of the Radio Shack catalog, the Heathkit catalog was highly anticipated for the incredibly diverse line of kits they offered. You could build anything from a simple transistor radio to a full-size color console TV, and everything in between. One thing you couldn’t buy from the catalog, though, was a satellite, but thanks to the rebooted Heathkit brand, you sorta-kinda can now. The solar-powered AMSAT CubeSat simulator, which appears to be approximately within the 1U spec, apart from the antennas sprouting from it, is being marketed to the STEM educational market. That’s somewhat belied by the hefty $995 price tag of the kit — for that much, you’d think it would be flyable — but the package does include a lot of extra books about CubeSat engineering, as well as some space memorabilia, including space-flown artifacts. So there’s that, at least.
Speaking of historic artifacts, remember 45 rpm record adapters? If you do, you’ll no doubt recall the frustrating search for one of these little plastic spiders that you’d snap into the big hole in the middle of a 45 record so you could play it on your LP turntable. You might also remember not being able to find one and playing a 45 without the adapter, thereby discovering what the “wow” in “wow and flutter” sounded like. Well, thanks to the wonders of the Internet, you never have to worry about not having a 45 adapter on hand, thanks to 45rpmRecordAdapters.com. The site offers all kinds of adapters in all sorts of materials, from the familiar plastic spider-style adapters that stay inside the record hole to the cylindrical or cone-shaped adapters that stay on the turntable. They’re available in different kinds of plastic as well as aluminum, and while the plastic ones don’t appear to be 3D-printed, we can see how you could easily whip up a model for one of these and quickly print it up.
Good news, everyone — it’s factory tour time again! This time, we’re taking a look inside Summit Interconnect, a quick-turn PCB manufacturer in California that specializes in low-volume but quick turnaround prototype work. This is mainly a slide show of the equipment and processes used to turn out quality PCBs fast, although there are a few short videos of the equipment at work. It’s a surprisingly hands-on process, with people doing a lot of the transportation of stack-ups between machines. We suppose that makes sense for this scale of work; it would probably be a lot more expensive to build automation that can deal with the variability in stack-ups than it is to pay a human to do it.
And finally, if you’ve ever wondered what life as a linesman would be like, you need to check out this POV video of a simple pole repair job. Aaron, from the “Bobsdecline” channel on YouTube, is a journeyman linesman in Canada who’s truly passionate about what he does and loves to share it with his audience. For this video, he donned the helmet-mounted GoPro and showed us the replacement of some broken equipment on a service pole, discovered after an unlucky squirrel knocked the power out to a customer. There’s some fantastic footage of the tools and equipment he uses while replacing the cutout, lightning arrestor, and dead-end insulators, but what gets us is how smooth Aaron’s every move is. He’s obviously done this hundreds of times, resulting in a certain amount of muscle memory, but when dealing with a 7,200-volt primary line, every motion has to be carefully considered. He still manages to make it all look silky smooth even while wearing bulky hot gloves. Face it — most of us would have probably dropped a tool at least once. Enjoy!
Taking delivery of a new vehicle from a dealership is an emotional mixed bag. On the one hand, you’ve had to endure the sales rep’s hunger to close the deal, the tedious negotiations with the classic “Let me run that by my manager,” and the closer who tries to tack on ridiculous extras like paint sealer and ashtray protection. On the other hand, you’re finally at the end of the process, and now you get to play with the Shiny New Thing in your life while pretending it hasn’t caused your financial ruin. Wouldn’t it be nice to skip all those steps in the run-up and just cut right to the delivery? That’s been Tesla’s pitch for a while now, and they finally made good on the promise with their first self-driving delivery.
The Model Y sedan drove itself from its birthplace at the Texas Gigafactory to its new owner, a 30-minute trip that covered a variety of driving situations. The fully autonomous EV did quite well over its journey, except for at the very end, where it blatantly ignored the fire lane outside its destination and parked against the red-painted curb. While some are trying to make hay of Tesla openly flaunting the law, we strongly suspect this was a “closed course” deal, at least for that last bit of the trip. So the production team probably had permission to park there, but it’s not a good look, especially with a parking lot just a few meters to the left. But it’s pretty cool that the vehicle was on the assembly line just a half-hour before. Betcha the owner still had to pay for dealer prep and delivery, though.
How much space does a million dollars take up? According to the Federal Reserve Bank of Chicago, a million one-dollar bills will fit into a cube about 50 inches (1.27 m) on a side, and they even built one as a display for their museum. Putting aside for the moment the fact that the Federal Reserve Bank of Chicago feels that they have enough public appeal to support a museum — we’d love to see the gift shop — would a million bucks really fit into a little more than a cubic meter? Not according to Calvin Liang, who took it upon himself to determine the real number of semolians on display. To do so, he built an app called Dot Counter, which lets users count items in an image by clicking on them. It turns out that the cube holds more like $1.55 million, at least assuming there are no voids inside. He also works through the math on what it would take to make an actual million-dollar cube; turns out that the 2.53:1 aspect ratio of a dollar bill makes it tough to manage anything other than a cuboid slightly smaller than the display cube holding $1.008 million. All of that really doesn’t matter, though, since Dot Counter is sure to help us win every “Guess the number of jelly beans in the jar” contest we see.
Even for the smallest of jobs, driving a truck is a hard job. And the job just keeps getting harder as the load gets bigger, as a driver in Maryland can attest to after a bizarre accident last week during the transport of a wind turbine blade. It’s a little hard to tell exactly what happened from the published stories, and the stills from the traffic-potato aren’t much help either. But it looks like the steerable rear wheels on the mega-long trailer used to move the blade, which looks to be at least 50 meters long, decided to take the eastbound lane of I-70 while the rest of the truck was going west. The pucker factor for the driver must have been off the charts as the blade crossed the highway median. Luckily, traffic was light at 5:00 AM when the accident happened, but even still, one injury was reported, and the ensuing mayhem as the blade remained lodged across both lanes as the Monday rush started must have been one for the books.
A couple of weeks ago, we featured a story on a great collection of Telnet games and demos, some of which are so accomplished that it really blows the mind. One that didn’t make that list is this fantastic ASCII moon-phase tracker. It uses ASCII art to depict the current phase of the moon visually, and yes, you can copy and paste the characters. True, it’s web-based, which probably accounts for it not appearing on the Telnet games list, but the source code is available, so making it work over Telnet might be a fun project for someone.
And finally, we’ve heard about “Netflix and chill,” but is “NASA and chill” about to be a thing? Apparently so, since NASA+, the US space agency’s media outlet, made a deal with Netflix to offer its live programming on the streaming service. This is fantastic news for Netflix subscribers, who instead of watching live launches and such for free on YouTube can pay be the privilege of watching the same content on Netflix, complete with extra ads thrown in. That’s one giant leap for mankind right there.
In today’s episode of “AI Is Why We Can’t Have Nice Things,” we feature the Hertz Corporation and its new AI-powered rental car damage scanners. Gone are the days when an overworked human in a snappy windbreaker would give your rental return a once-over with the old Mark Ones to make sure you hadn’t messed the car up too badly. Instead, Hertz is fielding up to 100 of these “MRI scanners for cars.” The “damage discovery tool” uses cameras to capture images of the car and compares them to a model that’s apparently been trained on nothing but showroom cars. Redditors who’ve had the displeasure of being subjected to this thing report being charged egregiously high damage fees for non-existent damage. To add insult to injury, if renters want to appeal those charges, they have to argue with a chatbot first, one that offers no path to speaking with a human. While this is likely to be quite a tidy profit center for Hertz, their customers still have a vote here, and backlash will likely lead the company to adjust the model to be a bit more lenient, if not outright scrapping the system.
Have you ever picked up a flashlight and tried to shine it through your hand? You probably have; it’s just a thing you do, like the “double tap” every time you pick up a power drill. We’ve yet to find a flashlight bright enough to sufficiently outline the bones in our palm, although we’ve had some luck looking through the flesh of our fingers. While that’s pretty cool, it’s quite a bit different from shining a light directly through a human head, which was recently accomplished for the first time at the University of Glasgow. The researchers blasted a powerful pulsed laser against the skull of a volunteer with “fair skin and no hair” and managed to pick up a few photons on the other side, despite an attenuation factor of about 1018. We haven’t read the paper yet, so it’s unclear if the researchers controlled for the possibility of the flesh on the volunteer’s skull acting like a light pipe and conducting the light around the skull rather than through it, but if the laser did indeed penetrate the skull and everything within it, it’s pretty cool. Why would you do this, especially when we already have powerful light sources that can easily penetrate the skull and create exquisitely detailed images of the internal structures? Why the hell wouldn’t you?!
TIG welding aluminum is a tough process to master, and just getting to the point where you’ve got a weld you’re not too embarrassed of would be so much easier if you could just watch someone who knows what they’re doing. That’s a tall order, though, as the work area is literally a tiny pool of molten metal no more than a centimeter in diameter that’s bathed in an ultra-bright arc that’s throwing off cornea-destroying UV light. Luckily, Aaron over at 6061.com on YouTube has a fantastic new video featuring up-close and personal shots of him welding up some aluminum coupons. He captured them with a Helios high-speed welding camera, and the detail is fantastic. You can watch the weld pool forming and see the cleaning action of the AC waveform clearly. The shots make it clear exactly where and when you should dip your filler rod into the pool, the effect of moving the torch smoothly and evenly, and how contaminants can find their way into your welds. The shots make it clear what a dynamic environment the weld pool is, and why it’s so hard to control.
And finally, the title may be provocative, but “The Sensual Wrench” is a must-see video for anyone even remotely interested in tools. It’s from the New Mind channel on YouTube, and it covers the complete history of wrenches. Our biggest surprise was learning how relatively recent an invention the wrench is; it didn’t really make an appearance in anything like its modern form until the 1800s. The video covers everything from the first adjustable wrenches, including the classic “monkey” and “Crescent” patterns, through socket wrenches with all their various elaborations, right through to impact wrenches. Check it out and get you ugga-dugga on.