Vista Normal

Hay nuevos artículos disponibles. Pincha para refrescar la página.
AnteayerSalida Principal

The End of BLHeli_32: Long Live AM32?

Por: Maya Posch
8 Junio 2024 at 05:00

An essential part of drones are the Electronic Speed Controller (ESC) which translate the commands from the flight computer into responses by the connected brushless motors (generally BLDCs). As the ESC determines a lot of the performance characteristics of a drone, it has its own firmware, which for (FPV) drones is overwhelmingly BLHeli, specifically the 32-bit version (BLHeli_32). Now the Norwegian company (BLHeli AS) behind this closed source firmware has thrown in the towel, citing illegal use of its firmware by sanctioned countries like Russia for purposes like warfare. This news and its implications are covered in detail in a video by the [Mads Tech]  YouTube channel, including the message sent to customers by the company’s lawyer.

So far the GitHub repository is still online, featuring binary images for BLHeli_32, as well as the open source BLHeli (8-bit Atmel/Silabs) firmware and BLHeli_S (multirotor 8-bit Silabs) firmware. Due to the open source nature of these earlier projects forks already exist, such as BlueJay for BLHeli_S, and with the AM32 project there is an open source 32-bit ESC alternative. For 8-bit platforms it would thus seem that even with BLHeli_32 vanishing there is no impact at all, while for 32-bit platforms AM32 seems to be largely a drop-in solution.

Regardless of the reasons behind BLHeli_32 vanishing like this, the community and businesses can now hopefully move their (financial) support over to the AM32 project, making this more of a blip than an outright disaster for those who are into their high-end multicopter drones.

Thanks to [Frank Zhao] for the tip.

3D Print a Drill-Powered Helicopter Toy Because It’s Simply Fun

Por: Lewin Day
14 Mayo 2024 at 20:00

These days, you can get a fully remote-control helicopter that you can fly around your house for about $30. Maybe less. Back in the day, kids had to make do with far simpler toys, like spinning discs that just flew up in the air. [JBV Creative] has built a toy just like that with his 3D printer. It may be simple, but it also looks pretty darn fun.

The design is straightforward. It uses a power drill to spin up a geartrain, which in turn drives a small disc propeller. Spin the propeller fast enough and it’ll launch high into the air. The geartrain mounts to the drill via the chuck, and it interfaces with the propeller with a simple toothed coupler. Alternatively, there’s also a hand-cranked version if you don’t have a power drill to hand.

Launching is easy. First, the drill spins the propeller up to speed. Then, when the drill’s trigger is released, it slows down, and the propeller spins free of the toothed coupler, with the lift it generates carrying it into the sky.

Files are available online for those interested. We could imagine this toy could make the basis for a great design competition. Students could compete to optimise the design with more effective gear ratios or better airfoils. We’ve seen similar designs before, too. Video after the break.

❌
❌