Vista Normal

Hay nuevos artículos disponibles. Pincha para refrescar la página.
AnteayerSalida Principal

Industrial Solar Heat Hits 1000˚C

22 Mayo 2024 at 02:00
An image of an orange, translucent glowing quartz rod. Thermocouples can be seen at intervals along the rod looking in.

While electricity generation has been the star of the energy transition show, about half of the world’s energy consumption is to make heat. Many industrial processes rely on fossil fuels to reach high temps right now, but researchers at ETH Zurich have found a new way to crank up the heat with a solar thermal trap. [via SciTechDaily]

Heating water for showers or radiant floor systems in homes is old hat now, but industrial application of solar power has been few and far between. Part of the issue has been achieving high enough temperatures. Opaque absorbers can only ever get as hot as the incident surface where the sun hits them, but some translucent materials, like quartz can form thermal traps.

In a thermal trap, “it is possible to achieve temperatures that are higher in the bulk of the material than at the surface exposed to solar radiation.” In the study, the researchers were able to get a 450˚C surface to produce 1,050˚C interior temperature in the 300 mm long quartz rod. The system does rely on concentrated solar power, 135 suns-worth for this study, but mirror and lens systems for solar concentration already exist due to the aforementioned electrical power generation.

This isn’t the only time we’ve seen someone smelting on sunlight alone, and you can always do it less directly by using a hydrogen intermediary. If you’re wanting a more domestic-level of heat, why not try the wind if the sun doesn’t shine much in your neighborhood?

Lost Foam Casting In Action

Por: Jenny List
19 Mayo 2024 at 20:00

Even though not all of us will do it, many of us are interested in the art of casting metal. It remains a process that’s not out of reach, though, especially for metals such as aluminium whose melting points are reachable with a gas flame. The video below the break takes us through the aluminium casting process by showing us the lost-foam casting of a cylinder head for a BSA Bantam motorcycle.

The foam pattern is CNC milled to shape, and the leftover foam swarf is removed with a hot wire. The pattern is coated with a refractory coating of gypsum slurry, and the whole is set up in a tub packed with sand. We get the impression that the escaping gasses make this a tricky pour without an extra sprue, and indeed, they rate it as not perfect. The cooling fins on the final head are a little ragged, so it won’t be the part that goes on a bike, but we can see with a bit of refining, this process could deliver very good results.

For this pour, they use a gas furnace, but we’ve seen it done with a microwave oven. Usually, you are losing wax, not foam, but the idea is the same.

❌
❌