Vista Normal

Hay nuevos artículos disponibles. Pincha para refrescar la página.
AnteayerSalida Principal

Ribbon Cable Repair Saves Touch ID

Por: Lewin Day
21 Mayo 2024 at 23:00

Some might consider a broken ribbon cable to be unsalvagable. They’re delicate and fragile as can be, and sometimes just fussing with them further is enough to cause additional damage. However, with the right set of skills, it’s sometimes possible to achieve the unthinkable. As [Master Liu] demonstrates, you can indeed repair a broken ribbon cable, even a tiny one.

The video concerns a ribbon cable linked to a Touch ID fingerprint sensor from an Apple device. It’s common to break these ribbon cables when repairing a phone, and doing so causes major problems. The Touch ID device is paired with the host phone, and cannot easily be replaced. Thus, repair is justified if at all possible.

The repair involves scraping back the outer coating on the two sections of ribbon cable to reveal the copper pads underneath. The copper is then coated with flux and solder to prepare them to be rejoined. Ultra-fine strands of wire are used to join the individual traces. Then, the repaired section is coated in some kind of sealant or epoxy to hold the joint together and protect it from failing again. The theory is easy, it’s just the execution that’s hard.

Ribbon cable repair is becoming one of our favorite topics of late. Sometimes you just need a steady hand and the guts to have a go. Video after the break.

This Tiny Game Boy Lets the Real Thing Play Online

Por: Tom Nardi
13 Mayo 2024 at 11:00

Back in 2021, [stacksmashing] found that it took little more than a Raspberry Pi Pico and some level-shifters to create a USB connection with the Game Boy’s link port. Add in the proper software, and suddenly you’ve got online multiplayer for the classic handheld. The hardware was cheap, the software open source, and a good time was had by all.

Inspired by both the original project and some of the hardware variations that have popped up over the years, [weiman] recently set out to create a new version of the USB link adapter that fits inside a miniature 3D printed Game Boy.

The big change from the original design is that this is using the far smaller, but equally capable, RP2040-Zero development board. This is mated with a SparkFun logic level converter board (or a clone of one from AliExpress) by way of a custom PCB that also includes the necessary edge connectors to connect directly to a Game Boy Link Cable.

Once the PCB is assembled, it’s dropped into the 3D printed Game Boy shell. [weiman] really worked some nice details into the case, such as aligning the d-pad and buttons in such a way that pressing them engages either the RESET or BOOTSEL buttons on RP2040-Zero. The screen of the printed handheld also lines up with the RGB LED on the top of the dev board, which can produce some cool lighting effects.

The original project from [stacksmashing] was an excellent example of the capabilities of the Pi Pico, and we’re glad to see it’s still being worked on and remixed by others. Even though the state of Game Boy emulation is nearly perfect these days, there’s still something to be said for working with the original hardware like this.

Ancient Cable Modem Reveals Its RF Secrets

22 Abril 2024 at 20:00

Most reverse engineering projects we see around here have some sort of practical endpoint in mind. Usually, but not always. Reverse-engineering a 40-year-old cable modem probably serves no practical end, except for the simple pleasure of understanding how 1980s tech worked.

You’ll be forgiven if the NABU Network, the source of the modem [Jared Boone] tears into, sounds unfamiliar; it only existed from 1982 to 1985 and primarily operated in Ottawa, Canada. It’s pretty interesting though, especially the Z80-based computer that was part of the package. The modem itself is a boxy affair bearing all the hallmarks of 1980s tech. [Jared]’s inspection revealed a power supply with a big transformer, a main logic board, and a mysterious shielded section with all the RF circuits, which is the focus of the video below.

Using a signal generator, a spectrum analyzer, and an oscilloscope, not to mention the PCB silkscreen and component markings, [Jared] built a block diagram of the circuit and determined the important frequencies for things like the local oscillator. He worked through the RF section, discovering what each compartment does, with the most interesting one probably being the quadrature demodulator. But things took a decidedly digital twist in the last compartment, where the modulated RF is turned into digital data with a couple of 7400-series chips, some comparators, and a crystal oscillator.

This tour of 80s tech and the methods [Jared] used to figure out what’s going on in this box were pretty impressive. There’s more to come on this project, including recreating the original signal with SDRs. In the mean time, if this put you in the mood for other videotext systems of the 80s, you might enjoy this Minitel terminal teardown.

❌
❌