Vista Normal

Hay nuevos artículos disponibles. Pincha para refrescar la página.
AnteayerSalida Principal

AMSAT-OSCAR 7: the Ham Satellite That Refused to Die

Por: Maya Posch
29 Marzo 2025 at 20:00

When the AMSAT-OSCAR 7 (AO-7) amateur radio satellite was launched in 1974, its expected lifespan was about five years. The plucky little satellite made it to 1981 when a battery failure caused it to be written off as dead. Then, in 2002 it came back to life. The prevailing theory being that one of the cells in the satellites NiCd battery pack, in an extremely rare event, failed open — thus allowing the satellite to run (intermittently) off its solar panels.

In a recent video by [Ben] on the AE4JC Amateur Radio YouTube channel goes over the construction of AO-7, its operation, death and subsequent revival are covered, as well as a recent QSO (direct contact).

The battery is made up of multiple individual cells.

The solar panels covering this satellite provided a grand total of 14 watts at maximum illumination, which later dropped to 10 watts, making for a pretty small power budget. The entire satellite was assembled in a ‘clean room’ consisting of a sectioned off part of a basement, with components produced by enthusiasts associated with AMSAT around the world. Onboard are two radio transponders: Mode A at 2 meters and Mode B at 10 meters, as well as four beacons, three of which are active due to an international treaty affecting the 13 cm beacon.

Positioned in a geocentric LEO (1,447 – 1,465 km) orbit, it’s quite amazing that after 50 years it’s still mostly operational. Most of this is due to how the satellite smartly uses the Earth’s magnetic field for alignment with magnets as well as the impact of photons to maintain its spin. This passive control combined with the relatively high altitude should allow AO-7 to function pretty much indefinitely while the PV panels keep producing enough power. All because a NiCd battery failed in a very unusual way.

What’s Wrong With This Antenna Tuner?

10 Marzo 2025 at 23:00

[Tech Minds] built one of those cheap automatic antenna tuners you see everywhere — this one scaled up to 350 watt capability. The kit is mostly built, but you do have to add the connectors and a few other stray bits. You can see how he did it in the video below.

What was very interesting, however, was that it wasn’t able to do a very good job tuning a wire antenna across the ham bands, and he asks for your help on what he should try to make things better.

It did seem to work in some cases, and changing the length of the wire changed the results, so we would guess some of it might be a resonance on the antenna wire. However, you would guess it could do a little better. It is well known that if a wire is one of a number of certain lengths, it will have extremely high impedence in multiple ham bands and be challenging to tune. So random wires need to not be exactly random. You have to avoid those lengths.

In addition, we were surprised there wasn’t more RF protection on the power lines. We would probably have suggested winding some coax to act as a shield choke, RF beads, and even extra bypass capacitors.

Another possible problem is that the diodes in these units are often not the best. [PU1OWL] talks about that in another video and bypasses some of the power lines against RF, too.

If you have any advice, we are sure he’d love to hear it. As [PU1OWL] points out, a tuner like this can’t be any better than its SWR measurement mechanism. Of course, all of these tuners take a few watts to light them up. You can, however, tune with virtually no power with a VNA.

A Ten Band SDR Transceiver For Homebrewers

Por: Jenny List
26 Febrero 2025 at 09:00

Making a multi-band amateur radio transceiver has always been a somewhat challenging project, and making one that also supported different modes would for many years have been of almost impossible complexity best reserved for expensive commercial projects. [Bob W7PUA] has tackled both in the form of a portable 10-band multi-mode unit, and we can honestly say he’s done a very good job indeed.

As you might expect in 2025 it’s a software defined radio (SDR), but to show how powerful the silicon available today is, it’s all implemented on a microcontroller. There’s a Teensy 4 with an audio codec board that does all the signal processing heavy lifting, and an RF board that takes care of the I/Q mixing and the analogue stuff.

Band switching is handled using a technique from the past; interchangeable plug-in coil and filter units, that do an effective job. The result is a modestly-powered but extremely portable rig that doesn’t look to have broken the bank, and since the write-up goes into detail on the software side we hope it might inform other SDR projects too. We might have gone for old-school embossed Dymo labels on that brushed aluminium case just for retro appeal, but we can’t fault it.

It’s not the first time we’ve looked at a small multi-band SDR here, but we think this one ups the game somewhat.

Thanks [Pete] for the tip!

Retrotectacular: Ham Radio As It Was

22 Febrero 2025 at 06:00

We hear a lot about how ham radio isn’t what it used to be. But what was it like? Well, the ARRL’s film “The Ham’s Wide World” shows a snapshot of the radio hobby in the 1960s, which you can watch below. The narrator is no other than the famous ham [Arthur Godfrey] and also features fellow ham and U.S. Senator [Barry Goldwater]. But the real stars of the show are all the vintage gear: Heathkit, Swan, and a very oddly placed Drake.

The story starts with a QSO between a Mexican grocer and a U.S. teenager. But it quickly turns to a Field Day event. Since the film is from the ARRL, the terminology and explanations make sense. You’ll hear real Morse code and accurate ham lingo.

Is ham radio really different today? Truthfully, not so much. Hams still talk to people worldwide and set up mobile and portable stations. Sure, hams use different modes in addition to voice. There are many options that weren’t available to the hams of the 1960s, but many people still work with old gear and older modes and enjoy newer things like microwave communications, satellite work, and even merging radio with the Internet.

In a case of history repeating itself, there is an example of hams providing communications during a California wildfire. Hams still provide emergency communication in quite a few situations. It is hard to remember that before the advent of cell phones, a significant thing hams like [Barry Goldwater] did was to connect servicemen and scientists overseas to their families via a “phone patch.” Not much of that is happening today, of course, but you can still listen in to ham radio contacts that are partially over the Internet right in your web browser.

❌
❌