Vista Normal

Hay nuevos artículos disponibles. Pincha para refrescar la página.
Ayer — 5 Julio 2025Salida Principal

Video Cable Becomes Transmitter with TEMPEST-LoRa

4 Julio 2025 at 23:00

EFI from cables is something every ham loves to hate. What if you modulated, that, though, using an ordinary cable as an antenna? If you used something ubiquitous like a video cable, you might have a very interesting exploit– which is exactly what [Xieyang Sun] and their colleagues have done with TEMPEST-LoRa, a technique to encode LoRa packets into video files.

The concept is pretty simple: a specially-constructed video file contains information to be broadcast via LoRa– the graphics card and the video cable serve as the Tx, and the Rx is any LoRa module. Either VGA or HDMI cables can be used, though the images to create the LoRa signal are obviously going to differ in each case. The only restriction is that the display resolution must be 1080×1920@60Hz, and the video has to play fullscreen. Fullscreen video might make this technique easy to spot if used in an exploit, but on the other hand, the display does not have to be turned on at the time of transmission. If employed by blackhats, one imagines syncing this to power management so the video plays whenever the screen blanks. 

This image sends LoRa. Credit: TEMPEST-LoRa

According to the pre-print, a maximum transmission distance of 81.7m was achieved, and at 21.6 kbps. That’s not blazing fast, sure, but transmission out of a totally air-gapped machine even at dialup speeds is impressive. Code is on the GitHub under an MIT license, though [Xieyang Sun] and the team are white hats, so they point out that it’s provided for academic use. There is a demo video, but as it is on bilbili we don’t have an easy way to embed it. The work has been accepted to the ACM Conference on Computer and Communications Security (2025), so if you’re at the event in Taiwan be sure to check it out. 

We’ve seen similar hacks before, like this one that uses an ethernet cable as an antenna. Getting away from RF, others have used fan noise, or even the once-ubiquitous HDD light. (And here we thought casemakers were just cheaping out when they left those off– no, it’s security!)

Thanks to [Xieyang Sun] for the tip! We’ll be checking the tips line for word from you, just as soon as we finish wrapping ferrites around all our cables.

AnteayerSalida Principal

Dummy Plug Gets Smarter with Raspberry Pi

16 Junio 2025 at 08:00

[Doug Brown] had a problem. He uses a dummy HDMI plug to fool a computer into thinking it has a monitor for when you want to run the computer headless. The dummy plug is a cheap device that fools the computer into thinking it has a monitor and, as such, has to send the Extended Display ID (EDID) to the computer. However, that means the plug pretends to be some kind of monitor. But what if you want it to pretend to be a different monitor?

The EDID is sent via I2C and, as you might expect, you can use the bus to reprogram the EEPROM on the dummy plug. [Doug] points out that you can easily get into trouble if you do this with, for example, a real monitor or if you pick the wrong I2C bus. So be careful.

In [Doug’s] case, he wanted to drop a 4K dummy plug to 1080p, but you could probably just as easily go the other way. After all, the plug itself couldn’t care less what kind of video you send it. It drops it all anyway.

Want to know more about HDMI? We can help out with that.

The Commodore 64 Gets An HDMI Upgrade

Por: Lewin Day
25 Mayo 2025 at 14:00

The Commodore 64 may remain the best selling computer of all time, but it has one major flaw. It doesn’t have HDMI! That makes it a total pain to use with modern displays. Thankfully, [Side Projects Lab] has whipped up an HDMI output board to solve this concerning oversight from the original designers.

The project was inspired by work by [Copper Dragon], who whipped up a nifty RGB output board. This device worked by reading the inputs to the C64’s VIC II graphics chip, which it then used to recreate a pixel-perfect video frames to then produce a quality analog video output. [Side Projects Lab] figured the same interception technique would be useful for producing a quality HDMI output.

The result was the HD-64. It sits inside the C64 in place of the original RF modulator. It uses an interleaver socket to capture digital signals going to the VIC II. It then feeds these signals to an emulated VIC II running inside an FPGA, which creates the pixel-perfect screen representation and synthesizes the proper digital HDMI output. Meanwhile, the analog audio output from the SID chip is captured from the RF modulator’s original header, and sent out via the HDMI output as well. The default output is super-sharp, but the device can be configured to allow scanlines and anti-aliasing if that’s more to your tastes.

If you want to hook your C64 up to a modern screen, this is going to be one of the tidiest and sharpest ways to do it. We’ve seen similar hacks for other platforms before, too. Video after the break.

[Thanks to RobIII for the tip!]

❌
❌