Vista Normal

Hay nuevos artículos disponibles. Pincha para refrescar la página.
AnteayerSalida Principal

Custom Firmware Adds Capabilities to Handie Talkie

4 Enero 2025 at 00:00

Although ham radio can be an engaging, rewarding hobby, it does have a certain reputation for being popular among those who would fit in well at gated Florida communities where the preferred mode of transportation is the golf cart. For radio manufacturers this can be a boon, as this group tends to have a lot of money and not demand many new features in their technology. But for those of us who skew a bit younger, there are a few radios with custom firmware available that can add a lot of extra capabilities.

The new firmware is developed by [NicSure] for the Tidradio TD-H3 and TD-H8 models and also includes a browser-based utility for flashing it to the radio without having to install any other utilities. Once installed, users of these handheld radios will get extras like an improved S-meter and detection and display of CTCSS tones for repeater usage. There’s also a programmer available that allows the radio’s memory channels to be programmed easily from a computer and a remote terminal of sorts that allows the radio to be operated from the computer.

One of the latest firmware upgrades also includes a feature called Ultra Graph which is a live display of the activity on a selected frequency viewable on a computer screen. With a radio like this and its upgraded firmware, a lot of the capabilities of radios that sell for hundreds of dollars more can be used on a much more inexpensive handheld. All of this is possible thanks to an on-board USB-C interface which is another feature surprisingly resisted by other manufacturers even just for charging the batteries.

A Low-Cost Spectrometer Uses Discrete LEDs and Math

28 Diciembre 2024 at 12:00

A spectrometer is a pretty common lab instrument, useful for determining the absorbance of a sample across a spectrum of light. The standard design is simple; a prism or diffraction grating to break up a light source into a spectrum and a detector to measure light intensity. Shine the light through your sample, scan through the spectrum, and graph the results. Pretty easy.

That’s not the only way to do it, though, as [Markus Bindhammer] shows with this proof-of-concept UV/visible spectrometer. Rather than a single light source, [Marb] uses six discrete LEDs, each with a different wavelength. The almost-a-rainbow’s-worth of LEDs are mounted on circular PCB, which is mounted to a stepper motor through a gear train. This allows the instrument to scan through all six colors, shining each on the sample one at a time. On the other side of the flow-through sample cuvette is an AS7341 10-channel color sensor, which can measure almost the entire spectrum from UV to IR.

The one place where this design seems iffy is that the light source spectrum isn’t continuous, as it would be in a more traditional design. But [Marb] has an answer for that; after gathering data at each wavelength, he applies a cubic spline interpolation to derive the spectrum. It’s demonstrated in the video below using chlorophyll extracted from spinach leaves, and it seems to generate a reasonable spectrum. We suppose this might miss a narrow absorbance spike, but perhaps this could be mitigated by adding a few more LEDs to the color wheel.

 

A Pi Pico Makes A Spectrum Laptop

Por: Jenny List
23 Diciembre 2024 at 19:30

There are many retrocomputer emulation projects out there, and given the relative fragility of the original machines as they enter their fifth decade, emulation seems to be the most common way to play 8-bit games. It’s easy enough to load one on your modern computer, but there are plenty of hardware options, too. “The computer we’d have done anything for back in 1983” seems to be a phrase many of them bring to mind, but it’s so appropriate because they keep getting better. Take [Stormbytes1970]’s Pi Pico-powered Sinclair ZX Spectrum mini laptop (Spanish language, Google Translate link), for example. It’s a slightly chunky netbook that’s a ZX Spectrum, and it has a far better keyboard than the original.

On the PCB is the Pico, the power supply circuitry, an SD card, and a speaker. But it’s when the board is flipped over that the interesting stuff starts. In place of the squidgy rubber keyboard of yore, it has a proper keyboard,. We’re not entirely sure which switch it uses, but it appears to be a decent one, nevertheless. The enclosure is a slick 3D-printed sub-netbook for retro gaming on the go. Sadly, it won’t edit Hackaday, so we won’t be slipping one in the pack next time we go on the road, but we like it a lot.

It’s not the first Spectrum laptop we’ve covered, but we think it has upped the ante over the last one. If you just want the Spectrum’s BASIC language experience, you can try a modern version that runs natively on your PC.

Fixing 1986 Sinclair Spectrum+2 With a High-Score of Issues

Por: Maya Posch
20 Diciembre 2024 at 00:00

The Sinclair ZX Spectrum+2 was the first home computer released by Amstrad after buying up Sinclair. It’s basically a Sinclair ZX Spectrum 128, but with a proper keyboard and a built-in tape drive. The one that [Mark] of the Mend it Mark YouTube channel got in for repair is however very much dead. Upon first inspection of the PCB, it was obvious that someone had been in there before, replacing the 7805 voltage regulator and some work on other parts as well, which was promising. After what seemed like an easy fix with a broken joint on the 9 VDC input jack, the video output was however garbled, leading to the real fault analysis.

Fortunately these systems have full schematics available, allowing for easy probing on the address and data lines. Based on this the Z80 CPU was swapped out to eliminate a range of possibilities, but this changed nothing with the symptoms, and a diagnostic ROM cartridge didn’t even boot. Replacing a DS74LS157 multiplexer and trying different RAM chips also made no difference. This still left an array of options on what could be wrong.

Tracking down one short with an IC seemed to be a break, but the video output remained garbled, leaving the exciting possibility of multiple faults remaining. This pattern continues for most of the rest of the video, as through a slow process of elimination the bugs are all hunted down and eliminated, leaving a revived Spectrum+2 (and working tape drive) in its wake, as well as the realization that even with all through-hole parts and full schematics, troubleshooting can still be a royal pain.

❌
❌