Vista Normal

Hay nuevos artículos disponibles. Pincha para refrescar la página.
AnteayerSalida Principal

Hackaday Links: November 17, 2024

18 Noviembre 2024 at 00:00
Hackaday Links Column Banner

A couple of weeks back, we covered an interesting method for prototyping PCBs using a modified CNC mill to 3D print solder onto a blank FR4 substrate. The video showing this process generated a lot of interest and no fewer than 20 tips to the Hackaday tips line, which continued to come in dribs and drabs this week. In a world where low-cost, fast-turn PCB fabs exist, the amount of effort that went into this method makes little sense, and readers certainly made that known in the comments section. Given that the blokes who pulled this off are gearheads with no hobby electronics background, it kind of made their approach a little more understandable, but it still left a ton of practical questions about how they pulled it off. And now a new video from the aptly named Bad Obsession Motorsports attempts to explain what went on behind the scenes.

To be quite honest, although the amount of work they did to make these boards was impressive, especially the part where they got someone to create a custom roll of fluxless tin-silver solder, we have to admit to being a little let down by the explanation. The mechanical bits, where they temporarily modified the CNC mill with what amounts to a 3D printer extruder and hot end to melt and dispense the solder, wasn’t really the question we wanted answered. We were far more interested in the details of getting the solder traces to stick to the board as they were dispensed and how the board acted when components were soldered into the rivets used as vias. Sadly, those details were left unaddressed, so unless they decide to make yet another video, we suppose we’ll just have to learn to live with the mystery.

What do mushrooms have to do with data security? Until this week, we’d have thought the two were completely unrelated, but then we spotted this fantastic article on “Computers Are Bad” that spins the tale of Iron Mountain, which people in the USA might recognize as a large firm that offers all kinds of data security products, from document shredding to secure offsite storage and data backups. We always assumed the “Iron Mountain” thing was simply marketing, but the company did start in an abandoned iron mine in upstate New York, where during the early years of the Cold War, it was called “Iron Mountain Atomic Storage” and marketed document security to companies looking for business continuity in the face of atomic annihilation. As Cold War fears ebbed, the company gradually rebranded itself into the information management entity we know today. But what about the mushrooms? We won’t ruin the surprise, but suffice it to say that IT people aren’t the only ones that are fed shit and kept in the dark.

Do you like thick traces? We sure do, at least when it comes to high-current PCBs. We’ve seen a few boards with really impressive traces and even had a Hack Chat about the topic, so it was nice to see Mark Hughes’ article on design considerations for heavy copper boards. The conventional wisdom with high-current applications seems to be “the more copper, the better,” but Mark explains why that’s not always the case and how trace thickness and trace spacing both need to be considered for high-current applications. It’s pretty cool stuff that we hobbyists don’t usually have to deal with, but it’s good to see how it’s done.

We imagine that there aren’t too many people out there with fond memories of Visual Basic, but back when it first came out in the early 1990s, the idea that you could actually make a Windows PC do Windows things without having to learn anything more than what you already knew from high school computer class was pretty revolutionary. By all lights, it was an awful language, but it was enabling for many of us, so much so that some of us leveraged it into successful careers. Visual Basic 6 was pretty much the end of the line for the classic version of the language, before it got absorbed into the whole .NET thing. If you miss that 2008 feel, here’s a VB6 virtual machine to help you recapture the glory days.

And finally, in this week’s “Factory Tour” segment we have a look inside a Japanese aluminum factory. The video mostly features extrusion, a process we’ve written about before, as well as casting. All of it is fascinating stuff, but what really got us was the glow of the molten aluminum, which we’d never really seen before. We’re used to the incandescent glow of molten iron or even brass and copper, but molten aluminum has always just looked like — well, liquid metal. We assumed that was thanks to its relatively low melting point, but apparently, you really need to get aluminum ripping hot for casting processes. Enjoy.

Transforming Pawn Changes the Game

3 Noviembre 2024 at 06:00
White pieces on a teal and white chess board. The line of pawns shows three segmented queens in the foreground, one piece being pressed by a man's hand from above in a state between queen and pawn, and the remainder of the pawns in the background in the pawn state.

3D printing has allowed the hobbyist to turn out all sorts of interesting chess sets with either intricate details or things that are too specialized to warrant a full scale injection molded production run. Now, the magic of 3D printing has allowed [Works By Design] to change the game by making pawns that can automatically transform themselves into queens.

Inspired by a CGI transforming chess piece designed by [Polyfjord], [Works By Design] wanted to make a pawn that could transform itself exist in the real world. What started as a chonky setup with multiple springs and a manually-actuated mechanism eventually was whittled down to a single spring, some pins, and four magnets as vitamins for the 3D printed piece.

We always love getting a peek into the trial-and-error process of a project, especially for something with such a slick-looking final product. Paired with a special chess board with steel in the ends, the magnets in the base activate the transformation sequence when they reach the opposite end.

After you print your own, how about playing chess against the printer? We’d love to see a version machined from metal too.

Thanks to [DjBiohazard] on Discord for the tip!

FLOSS Weekly Episode 807: Bitten by the Penguin

30 Octubre 2024 at 18:30

This week, Jonathan Bennett and Dan Lynch chat with Josh Bressers, VP of Security at Anchore, and host of the Open Source Security and Hacker History podcasts. We talk security, SBOMs, and how Josh almost became a Sun fan instead of a Linux geek.

https://opensourcesecurity.io
https://hackerhistory.com
https://infosec.exchange/@joshbressers
https://anchore.com

Did you know you can watch the live recording of the show Right on our YouTube Channel? Have someone you’d like us to interview? Let us know, or contact the guest and have them contact us! Take a look at the schedule here.

Direct Download in DRM-free MP3.

If you’d rather read along, here’s the transcript for this week’s episode.

Places to follow the FLOSS Weekly Podcast:

Putting the New CryoGrip Build Plate to the Test

25 Octubre 2024 at 08:00

BIQU has released a new line of low-temperature build plates that look to be the next step in 3D printing’s iteration—or so YouTuber Printing Perspective thinks after reviewing one. The Cryogrip Pro is designed for the Bambu X1, P1, and A1 series of printers but could easily be adapted for other magnetic-bed machines.

The bed adhesion strength when cold is immense!

The idea of the new material is to reduce the need for high bed temperatures, keeping enclosure temperatures low. As some enclosed printer owners may know, trying to print PLA and even PETG with the door closed can be troublesome due to how slowly these materials cool. Too high an ambient temperature can wreak havoc with this cooling process, even leading to nozzle-clogging.

The new build plate purports to enable low, even ambient bed temperatures, still with maximum adhesion. Two versions are available, with the ‘frostbite’ version intended for only PLA and PETG but having the best adhesion properties.  A more general-purpose version, the ‘glacier’ sacrifices a little bed adhesion but gains the ability to handle a much wider range of materials.

An initial test with a decent-sized print showed that the bed adhesion was excellent, but after removing the print, it still looked warped. The theory was that it was due to how consistently the magnetic build plate was attached to the printer bed plate, which was now the limiting factor. Switching to a different printer seemed to ‘fix’ that issue, but that was really only needed to continue the build plate review.

They demonstrated a common issue with high-grip build plates: what happens when you try to remove the print. Obviously, magnetic build plates are designed to be removed and flexed to pop off the print, and this one is no different. The extreme adhesion, even at ambient temperature, does mean it’s even more essential to flex that plate, and thin prints will be troublesome. We guess that if these plates allow the door to be kept closed, then there are quite a few advantages, namely lower operating noise and improved filtration to keep those nasty nanoparticles in check. And low bed temperatures mean lower energy consumption, which is got to be a good thing. Don’t underestimate how much power that beefy bed heater needs!

Ever wondered what mini QR-code-like tags are on the high-end build plates? We’ve got the answer. And now that you’ve got a pile of different build plates, how do you store them and keep them clean? With this neat gadget!

❌
❌