Vista Normal

Hay nuevos artículos disponibles. Pincha para refrescar la página.
AnteayerSalida Principal

8MM Digitization For Anyone

Por: Jenny List
29 Junio 2024 at 02:00

There’s a pleasing retro analogue experience to shooting Super 8 film, giving as it does the feel of a 1970s home movie to your work. But once you’ve had the film developed, there’s a need for a projector to enjoy the result. Far better to digitize it for a more modern viewing and editing experience. [Elbert] has made a digitizer for 8mm film which takes the best approach, snapping each frame individually to be joined together in a video file as a whole.

The frame of the device is 3D printed, but some parts of a film transport must be higher quality than a printed part can deliver. These, in particular the sprockets, are salvaged from a film viewer, and the movement is powered by a set of stepper motors. The steppers are controlled by an ESP32, and the optics are provided by a USB microscope. All this is hooked up to a PC which grabs each image, and finally stitches them all together using ffmpeg.

As anyone who has dabbled in 8mm film will tell you, there is a lot in the quality of a film digitizer, and it’s often worth paying for a professional job from someone aimed at the film-making world rather than you local photographic print booth. It would be interesting to take a look at this device, and see whether its quality is worth pursuing. After all, some of us have been known to dabble in 8mm film.

Fixing A Camera’s WiFi Connectivity With Ghidra

30 Mayo 2024 at 20:00
A picture of the camera in question, successfully uploading a pic thanks to the fix found

If your old camera’s WiFi picture upload feature breaks, what do you do? Begrudgingly get a new one? Well, if you’re like [Ge0rg], you break out Ghidra and find the culprit. He’s been hacking on Samsung’s connected cameras for a fair bit now, and we’ve covered his adventures hacking on Samsung’s Linux-powered camera series throughout the last decade, from getting root on them for fun, to deep dives into the series. Now, it was time to try and fix a problem with one particular camera, Samsung WB850F, which had its picture upload feature break at some point.

[Ge0rg] grabbed a firmware update .zip, and got greeted by a bunch of compile-time debug data as a bonus, making the reverse-engineering journey all that more tempting. After figuring out the update file partition mapping, loading the code into Ghidra, and feeding the debug data into it to get functions to properly parse, he got to the offending segment, and eventually figured out the bug. Turned out, a particularly blunt line of code checking the HTTP server response was confused by s in https, and a simple spoof server running on a device of your choice with a replacement hosts file is enough to have the feature work again, well, paired with a service that spoofs the long-shutdown Samsung’s picture upload server.

Turned out, a bunch more cameras from Samsung had the same check misfire for them, which made this reverse-engineering journey all that more fruitful. Once again, Ghidra skills save the day.

An Improved Spectrometer, No Lasers Required

28 Mayo 2024 at 05:00

Here at Hackaday, we love it when someone picks up the ball from a previous project and runs with it. That’s what we’re all about, really — putting out cool projects that just might stimulate someone else to extend and enhance it, or even head off in an entirely new direction. That’s how the state of the art keeps moving.

This DIY spectrometer project is a fantastic example of that ethos. It comes to us from [Michael Prasthofer], who was inspired by [Les Wright]’s PySpectrometer, a simple device cobbled together from a pocket spectroscope and a PiCam. As we noted at the time, [Les] put a lot of the complexity of his instrument in the software, but that doesn’t mean there wasn’t room for improvement.

[Michael]’s goals were to make his spectrometer a little easier to build, and to improve the calibration process and overall accuracy. To help with the former, he went with software correction of the color filter array on his Fuji X-T2. This has the advantage of not requiring a high-power laser and precision micropositioner to ablate the CFA, and avoids potentially destroying an expensive camera. For the latter, [Michael] delved deep into the theory behind spectroscopy and camera optics to develop a process for correlating the intensity of light along the spectrum with the specific wavelength at that location. He also worked a little machine learning into the process, training a network to optimize the response functions.

The result is pretty accurate spectra with no lasers required for calibration. The video below goes into a lot of detail and ends up being a good introduction to some of the basics of spectroscopy, along with the not-so-basics.

Designing A Quality Camera Slider Can Be Remarkably Satisfying

Por: Lewin Day
15 Mayo 2024 at 20:00

Camera sliders are great creative tools, letting you get smooth controlled shots that can class up any production. [Anthony Kouttron] decided to build one for an engineering class, and he ended up mighty satisfied with what he and his team accomplished.

As an engineering class project, this wasn’t a build done on a whim. Instead, [Anthony] and his fellow students spent plenty of time hashing out what they needed this thing to do, and how it should be built. An Arduino was selected as the brains of the operation, as a capable and accessible microcontroller platform. Stepper motors and a toothed belt drive were used to move the slider in a controllable fashion. The slider’s control interface was an HD44780-based character LCD, along with a thumbstick and two pushbuttons. The slider relied on steel tubes for a frame, which was heavy, but cost-effective and easy to fabricate. Much of the parts were salvaged from legendary e-waste bins on the university grounds.

The final product was stout and practical. It may not have been light, but the steel frame and strong stepper motor meant the slider could easily handle even heavy DSLR cameras. That’s something that lighter builds can struggle with.

Ultimately, it was an excellent learning experience for [Anthony] and his team. As a bonus, he got some great timelapses out of it, too. Video after the break.

Broken Lens Provides Deep Dive Into Camera Repair

13 Mayo 2024 at 23:00

While most of us are probably willing to pick up the tools and void the warranty on just about anything, often just to see what’s inside, many of us draw the line at camera gear. The tiny screws, the complex mechanisms, and the easily destroyed optical elements are all enough to scare off the average hacker. Not so for [Anthony Kouttron], who tore into a broken eBay Sigma lens and got it working again.

Now, to be fair, modern lenses tend to have a lot more in them that’s amenable to repair than back in the old days. And it seemed from the get-go that [Anthony]’s repair was going to be more electronic than optical or mechanical. The 45-mm lens was in fantastic shape physically, but wouldn’t respond to any controls when mounted to a camera body. Removing the lens bayonet mount exposed the main controller PCB, which is tightly packed with SMD components and connectors for the flex cables that burrow further into the lens to its many sensors and actuators. By probing traces with his multimeter, [Anthony] found a DC-DC converter on the main PCB with an unknown component nearby. This turned out to be an SMD fuse, and as luck would have it, it was open. Replacing the fuse got the lens working again, and while there’s always the nagging suspicion that whatever blew the fuse the first time could happen again, the repair seems to have worked.

Despite the simplicity of the fix, [Anthony] continued the teardown and shared a lot of tips and tricks for lens repairs, including where he would have looked next if the fuse had been good. One tip we loved was the use of double-sided tape to organize parts as they’re removed; this is particularly important with camera gear where screws or different lengths can make for a really bad day on reassembly.

Feeling the need to dive deeper into lens repair? This step-by-step repair should keep you satisfied.

RepTrap Keeps Watch Over Our Cold-Blooded Friends

7 Mayo 2024 at 08:00

Wait a second, read that title again. This isn’t a throwback 3D printing project at all. That’s “RepTrap” as in reptile trap, and it’s a pretty clever way to study our cold-blooded friends in their natural habitat.

Now, game cameras — or trail cameras, if you’re less interested in eating what you see — are pretty much reduced to practice. For not that much money you can pick up one of these battery-powered devices, strap it to a tree, and have it automatically snap high-quality pictures of whatever wildlife happens to wander past. But nearly all of the commercially available game cameras have pyroelectric infrared sensors, which trigger on the temperature difference between a warm-blooded animal and the ambient temperature of the background. But what to do when you’re more interested in cold-blooded critters?

Enter [Mirko], who stumbled upon this problem while working with a conservation group in Peru. The group wanted to study snakes, insects, and other ectothermic animals, which are traditionally studied by trapping with pitfalls and other invasive techniques. Unable to rely on PIR, [Mirko] rigged up what amounts to a battery-powered light curtain using a VL53L4CD laser time-of-flight sensor. Mounted above the likely path of an animal, the sensor monitors the height of everything in its field of view. When an animal comes along, cold-blooded or otherwise, RepTrap triggers a remote camera and snaps a picture. Based on the brief video below, it’s pretty sensitive, too.

[Mirko] started out this project using an RP2040 but switched to an ESP32 to take advantage of Bluetooth camera triggering. The need for weatherproofing was also a big driver for the build; [Mirko] is shooting for an IP68 rating, which led to his interesting use of a Hall sensor and external magnet as a power switch.

 

❌
❌