Vista Normal

Hay nuevos artículos disponibles. Pincha para refrescar la página.
AnteayerSalida Principal

The Tragic Story Of The Ill-Fated Supergun

Por: Lewin Day
28 Mayo 2024 at 14:00

In the annals of ambitious engineering projects, few have captured the imagination and courted controversy quite like Gerald Bull’s Supergun. Bull, a Canadian artillery expert, envisioned a gun that could shoot payloads directly into orbit. In time, his ambition led him down a path that ended in both tragedy and unfinished business.

Depending on who you talk to, the Supergun was either a new and innovative space technology, or a weapon of war so dangerous, it couldn’t be allowed to exist. Ultimately, the powers that be intervened to ensure we would never find out either way.

First Shots Fired

Gerard Bull, pictured at the Space Research Institute at McGill University in 1964. Credit: CC BY-SA 3.0

Gerald Bull was born in 1928 in Ontario, Canada. After a tumultuous youth, his uncle was able to find him a place at the University of Toronto at the age of sixteen. Where his uncle suggested the medical school, Bull requested a position in the newly established aeronautical engineering course. After passing an interview, he was able to begin his tertiary studies in the field at the age of sixteen.

He would go on to graduate in 1948, a strictly average student that had done little to distinguish himself during his period at the university. However, his energy and passion would eventually see him admitted to further study at the Institute of Aerodynamics, where he studied the design of advanced wind tunnels.

This academic pursuit laid the groundwork for his future endeavors. While finishing his PhD in 1950, Bull would eventually be nominated for military work with the Defence Research Board. That led to his position with the Canadian Armament Research and Development Establishment, where he dived into the world of advanced artillery technology.

The Project HARP gun, abandoned in Barbados. Credit: Brohav, Public Domain

He began exploring the use of artillery guns for supersonic aerodynamic research, as a cheaper alternative to building high-speed wind tunnels. Later on, he would go on to develop the High Altitude Research Project (HARP), a joint Canadian-American initiative aimed at exploring ballistics at extremely high altitudes.

Kicking off in the 1960s, HARP’s most notable achievement was the creation of a massive gun capable of firing projectiles into the stratosphere, setting the stage for Bull’s lifelong obsession with superguns.

His early experiments with HARP demonstrated the potential of using artillery to reach the upper atmosphere, though the project was eventually shuttered due to financial and political pressures. The project developed a 16.4 inch (41.6 cm) smooth-bore gun which was installed for testing in Barbados.

By 1962, HARP was firing 330 pound (150 kilogram) finned projectiles at over 10,000 feet per second (3000 m/s), reaching altitudes of 215,000 feet (65 kilometers). The project was funded by using the projectiles to capture meteorological data in the upper atmosphere.

Aiming Higher

The seeds for Bull’s later work on the infamous Supergun were sown during these formative years. His desire was not just to shoot projectiles into the upper atmosphere, but to fire them so fast that they could actually reach orbit. His idea to achieve this was simple — he’d use a large gun to fire a projectile high into the atmosphere, where it would then ignite a rocket to boost its velocity further.

Bull’s SRC was in the arms trade, with the company desinging and manufacturing the GC-45 howitzer for multiple customers. Credit: Sturmvogel 66, CC BY-SA 3.0

Well, simple enough on paper, anyway. But achieving this feat was altogether more complex in reality. Bull began investigating the concept during his time at the HARP project. There, he developed rocket-assisted projectiles that could be fired from an artillery gun without damage to the solid fuel propellant.

Plans centered around a small multi-staged rocket called the Martlet. It was to be fired from a 16.4 inch (41.6 cm) gun that was assembled by joining two existing naval cannons together into one massive barrel a full 110 feet (33.5 meters) long. Sadly, HARP’s funding began to dry up towards the end of the 1960s, and a change of government sealed the project’s fate.

Bull ended up going out on his own, establishing the Space Research Corporation (SRC) to pursue his goals. The company operated as an artillery consultancy for international clients, including the Canadian and US military. He developed improved rifling techniques which helped give military artillery longer range and better accuracy. SRC and Bull would go on to sell shells and guns to states all around the world. On the side, he continued to develop his orbital gun technology.

A small barrel section from Project Babylon exists in the collection of the Imperial War Museum, Duxford. Credit: CC BY-SA 3.0

The culmination of Bull’s work came in the late 1980s with the Supergun project. After serving jail time in the US for dealing arms to South Africa, Bull had moved away from clients in the West, and had taken up work with China and Iraq. Ultimately, though, this gave him the opportunity to pursue his dream of an orbital launch gun once more.

Officially known as Project Babylon, it was commissioned by Saddam Hussein in 1988, while he was then the Iraqi defense secretary. The project’s goal was ostensibly to develop a supergun capable of launching satellites into orbit, potentially reducing the cost and complexity of space launches. The guns were intended to fire multi-stage rocket propelled shells that would be capable of reaching orbit.

Bull agreed to continue work on conventional military artillery pieces for the Iraqi government, in exchange for a $25 million payment towards Project Babylon. The project would see the construction of multiple “Baby Babylon” guns, each measuring 147 feet (44.8 meters) long with a caliber of 13.8 inches (35 cm).

Big Babylon

The ultimate goal, however, was the production of two mighty PC-2 Big Babylon guns. They would measure 512 feet (156 meters) long with a massive 39 inch (99 cm) bore. The PC-2 was intended to be capable of launching a 440 lb (200 kg) satellite into an orbital trajectory, carried by a 4,400 lb (2,000 kg) rocket-assisted projectile. Alternatively, it could have launched a 1,300 lb (600 kg) projectile over 620 miles (1,000 km). The final gun would have sat almost 328 feet (100 m) high at the tip, with the barrel suspended by cables from a large supporting frame. The barrel itself was to weigh 1,510 tons,  with the whole structure coming in at a hefty 2,100 tons in total.

Two segments of the Iraqi supergun, Big Babylon, are displayed at the Royal Armouries in Fort Nelson, Portsmouth. Credit: Geni, GFDL CC-BY-SA

The technical challenges were immense. Achieving the necessary muzzle velocity to reach orbit required unprecedented gun lengths and extremely durable materials to withstand the immense pressures involved. The initial construction of the Baby Babylon revealed problems with seals between multiple barrel segments. This was a complication from a a necessary engineering decision, as producing a single barrel at such large sizes was impractical.

Meanwhile, the political implications of the project drew international concern. Given the fraught political situation at the time, a large Iraqi gun project was not popular on the international stage. On paper, the gun’s applications for military use were limited. It was not possible to readily aim the gun, nor could it fire rapid salvos on a given target. It was impossible to move or hide, and it was extremely vulnerable to air attack.

Regardless of these practical limitations, few countries wanted Iraq to have such a potent gun in any way, shape or form. Furthermore, Bull was continuing to work on other Iraqi artillery projects, including Scud missile development. This only made him more unpopular with Iraq’s enemies.

The project’s demise was as dramatic as its ambition. In 1990, Bull was assassinated in Brussels as he approached his apartment’s front door. It followed a series of break-ins to his home, which were suggested to be a threat to the engineer to cease his work on the project. His death effectively ended Project Babylon. Supergun components, which had been in production across Europe, were seized by customs officers, and Bull’s staff in turn abandoned the project. Parts of the gun still exist today, after being donated to museums in the UK.

In the aftermath, the Supergun project remains a fascinating study of the interactions between ambition, technology and politics. Gerard Bull’s legacy is a testament to the limits of engineering, and the limits of our own ruling structures. While technically feasible, the Supergun could not be born, given the perceived geopolitical ramifications of such a weapon.

Gerard Bull’s story is a poignant chapter in the history of space exploration technology, marked by brilliant engineering marred by political intrigue and a tragic end. It serves as a reminder of the complexities involved when mixed-use technologies clash with political interests and national security concerns.

❌
❌