Vista Normal

Hay nuevos artículos disponibles. Pincha para refrescar la página.
AnteayerSalida Principal

The Apple Watch As An Ammeter

Por: Jenny List
11 Septiembre 2024 at 05:00

Your shiny new personal electronic device is likely to be designed solely as an app platform to run the products of faceless corporations, so the story goes, and therefore has an ever smaller hacking potential. Perhaps that view is needlessly pessimistic, because here’s [JP3141] with an example that goes against the grain. It’s an Apple Watch, being used as an ammeter. How it does that comes as the result of a delicious piece of lateral thinking.

Like many mobile devices, the device comes with a magnetometer. This serves as an electronic compass, but it’s also as its name might suggest, an instrument for sensing magnetic fields in three axes. With a 3D printed bobbin that slides over the watch, and a few turns of wire, it can sense the magnetic field created by the current, and a measurement can be derived from it. The software on the watch is only a simple proof of concept as yet, but it applies some fairly understandable high-school physics to provide a useful if unexpected measure of current.

We’re surprised to see just how many times the Apple Watch has appeared on these pages, but scanning past projects it was a cosmetic one which caught our eye. Who wouldn’t want a tiny Mac Classic!

Quantum Sensor Uses Synthetic Diamond

19 Agosto 2024 at 02:00

Diamonds are nearly perfect crystals, but not totally perfect. The defects in these crystals give the stones their characteristic colors. But one type of defect, the NV — nitrogen-vacancy — center, can hold a particular spin, and you can change that spin with the correct application of energy. [Asianometry] explains why this is important in the video below.

Interestingly, even at room temperature, an NV center stays stable for a long time. Even more importantly, you can measure the spin nondestructively by detecting light emissions from the center.

There are obvious applications for quantum computing, but an even more practical application is sensing magnetic fields. These could replace SQUIDs, which are often used for sensitive magnetic measurements but require cold temperatures to support superconductivity.

Of course, you have to create a diamond artificially to get the NV centers the way you want and it turns out that semiconductor manufacturing tools can help produce the diamonds you need.

The last time we looked in on diamond defects, the proposal was to use them for data storage. It seems like this could be easier than holding out for room-temperature superconductors to improve SQUIDs.

❌
❌