Vista Normal

Hay nuevos artículos disponibles. Pincha para refrescar la página.
AnteayerSalida Principal

ESP32 Brings New Features To Classic Geiger Circuit

Por: Tom Nardi
24 Junio 2024 at 08:00

There’s no shortage of Geiger counter projects based on the old Soviet SBM-20 tube, it’s a classic circuit that’s easy enough even for a beginner to implement — so long as they don’t get bitten by the 400 volts going into the tube, that is. Toss in a microcontroller, and not only does that circuit get even easier to put together and tweak, but now the features and capabilities of the device are only limited by how much code you want to write.

Luckily for us, [Omar Khorshid] isn’t afraid of wrangling some 0s and 1s, and the result is the OpenRad project. In terms of hardware, it’s the standard SBM-20 circuit augmented with a LILYGO ESP32 development board that includes a TFT display. But where this one really shines is the firmware.

With the addition of a few hardware buttons, [Omar] was able to put together a very capable interface that runs locally on the device itself. In addition, the ESP32 serves up a web page that provides some impressive real-time data visualizations. It will even publish its data via MQTT if you want to plug it into your home automation system or other platform.

Between the project’s Hackaday.io page and GitHub repository, [Omar] has done a fantastic job of documenting the project so that others can recreate it. That includes providing the schematics, KiCad files, and Gerbers necessary to not only get the boards produced and assembled, but modified should you want to adapt the base OpenRad design.

This project reminds us of the uRADMonitor, which [Radu Motisan] first introduced in 2014 to bring radiation measuring to the masses. This sort of hardware has become far more accessible over the last decade, bringing the dream of a globally distributed citizen-operated network of radiation and environmental monitors much closer to reality.

A Wireless Monitor Without Breaking The Bank

Por: Jenny List
9 Junio 2024 at 14:00

The quality of available video production equipment has increased hugely as digital video and then high-definition equipment have entered the market. But there are still some components which are expensive, one of which is a decent quality HD wireless monitor. Along comes [FuzzyLogic] with a solution, in the form of an external monitor for a laptop, driven by a wireless HDMI extender.

In one sense this project involves plugging in a series of components and simply using them for their intended purpose, however it’s more than that in that it involves some rather useful 3D printed parts to make a truly portable wireless monitor, as well as saving the rest of us the gamble of buying wireless HDMI extender without knowing whether it would deliver.

He initially tried an HDMI-to-USB dongle and a streaming Raspberry Pi, however the latency was far too high to be useful. The extender does have a small delay, but not so bad as to be unusable. The whole including the monitor can be powered from a large USB power bank, answering one of our questions. All the files can be downloaded from Printables should you wish to follow the same path, and meanwhile there’s a video with the details below the break.

Keep Tabs on PC Use with Custom Analog Voltmeter

26 Abril 2024 at 23:00

With the demands of modern computing, from video editing, streaming, and gaming, many of us will turn to a monitoring system of some point to keep tabs on CPU usage, temperatures, memory, and other physical states of our machines. Most are going to simply display on the screen but this data can be sent to external CPU monitors as well. This retro-styled monitor built on analog voltmeters does a great job of this and adds some flair to a modern workstation as well.

The build, known as bbMonitor, is based on the ESP32 platform which controls an array of voltmeters via PWM. The voltmeters have been modified with a percentage display to show things like CPU use percentage. Software running on the computers sends this data in real time to the ESP32 so the computer’s behavior can be viewed at a glance. Each voltmeter is also augmented with RGB LEDs that change color from green to red as use increases as well. The project’s creator, [Corebb], also notes that the gauges will bounce around if the computer is under heavy load but act more linearly when under constant load, also helping to keep an eye on computer status.

While the build does seem to rely on a Windows machine to run the software for export to the monitor, all of the code is open-sourced and available on the project’s GitHub page and could potentially be adapted for other operating systems. And, as far as the voltmeters themselves go, there have been similar projects in the past that use stepper motors as a CPU usage monitor instead.

❌
❌