Vista Normal

Hay nuevos artículos disponibles. Pincha para refrescar la página.
AnteayerSalida Principal

Making GameCube Keyboard Controller Work with Animal Crossing

27 Junio 2025 at 05:00
Animal Crossing keyboard banner

[Hunter Irving] is a talented hacker with a wicked sense of humor, and he has written in to let us know about his latest project which is to make a GameCube keyboard controller work with Animal Crossing.

This project began simply enough but got very complicated in short order. Initially the goal was to get the GameCube keyboard controller integrated with the game Animal Crossing. The GameCube keyboard controller is a genuine part manufactured and sold by Nintendo but the game Animal Crossing isn’t compatible with this controller. Rather, Animal Crossing has an on-screen keyboard which players can use with a standard controller. [Hunter] found this frustrating to use so he created an adapter which would intercept the keyboard controller protocol and replace it with equivalent “keypresses” from an emulated standard controller.

Controller wiring schematic.In this project [Hunter] intercepts the controller protocol and the keyboard protocol with a Raspberry Pi Pico and then forwards them along to an attached GameCube by emulating a standard controller from the Pico. Having got that to work [Hunter] then went on to add a bunch of extra features.

First he designed and 3D-printed a new set of keycaps to match the symbols available in the in-game character set and added support for those. Then he made a keyboard mode for entering musical tunes in the game. Then he integrated a database of cheat codes to unlock most special items available in the game. Then he made it possible to import images (in low-resolution, 32×32 pixels) into the game. Then he made it possible to play (low-resolution) videos in the game. And finally he implemented a game of Snake, in-game! Very cool.

If you already own a GameCube and keyboard controller (or if you wanted to get them) this project would be good fun and doesn’t demand too much extra hardware. Just a Raspberry Pi Pico, two GameCube controller cables, two resistors, and a Schottky diode. And if you’re interested in Animal Crossing you might enjoy getting it to boot Linux!

Thanks very much to [Hunter] for writing in to let us know about this project. Have your own project? Let us know on the tipsline!

Converting an E-Paper Photo Frame into Weather Map

21 Junio 2025 at 20:00
Photo of Inky Frame e-paper display

Here’s a great hack sent in to us from [Simon]. He uses an e-paper photo frame as a weather map!

By now you are probably aware of e-paper technology, which is very low power tech for displaying images. E-paper only uses energy when it changes its display, it doesn’t draw power to maintain a picture it has already rendered. The particular e-paper used in this example is fairly large (as e-paper goes) and supports color (not just black and white) which is why it’s expensive. For about US$100 you can get a 5.7″ 7-color EPD display with 600 x 448 pixels.

Beyond the Inky Frame 5.7″ hardware this particular hack is mostly a software job. The first program, written in python, collects weather data from the UK Met Office. Once that image data is available a BASH script is run to process the image files with imagemagick. Finally a Micro Python script runs on the Pico to download the correct file based on the setting of the real-time clock, and update the e-paper display with the weather map.

Thanks to [Simon] for sending this one in via the tipsline. If you have your own tips, please do let us know! If you’re interested in e-paper tech we have certainly covered that here in the past, check out E-Paper Anniversary Counter Is A Charming Gift With Minimal Power Draw and A Neat E-Paper Digit Clock (or Four).

The video below the break is a notice from the UK Met Office regarding their data services.

Ben Eater Makes Computer Noises

20 Junio 2025 at 02:00
Hand holding small speaker

When [Ben Eater] talks, hackers everywhere listen. In his latest video [Ben] shows us how to make computer noises using square waves and a 6502 microprocessor.

[Ben] uses the timer in the W65C22 Versatile Interface Adapter to generate the square waves which generate a tone. He then adds support for a new BEEP command into his MS BASIC interpreter. We covered [Ben Eater]’s MS BASIC here at Hackaday back in April, so definitely check that out if you missed it.

After checking the frequency of oscillation using his Keysight oscilloscope he then wires in an 8Ω 2W speaker via a LM386 audio amplifier. We can’t use the W65C22 output pin directly because that can only output a few milliwatts of power. [Ben] implements the typical circuit application from the LM386 datasheet to drive the speaker. To complete his video [Ben] writes a program for his BASIC interpreter which plays a tune.

Thanks to [Mark Stevens] for writing in to let us know about this one. If you’re planning to play along at home a good place to start is to build your own 6502, like [Ben] did!

Fission Simulator Melts Down RP2040

19 Junio 2025 at 20:00
Screenshot of Pi Pico RMBK simulator

We’ve seen a lot of projects based on the Pi Pico, but a nuclear reactor simulation is a new one. This project was created by [Andrew Shim], [Tyler Wisniewski] and another group member for Cornell’s ECE 4760 class on embedded design (which should silence naysayers who think the Pi Pico can’t be a “serious” microcontroller), and simulates the infamous soviet RMBK reactor of Chernobyl fame. 

The simulation uses a 4-bit color VGA model. The fission model includes uranium fuel, water, graphite moderator, control rods and neutrons. To simplify the math, all decayed materials are treated identically as non-fissile, so no xenon poisoning is going to show up, for example. You can, however, take manual control to both scram the reactor and set it up to melt down with the hardware controller.

The RP2040’s dual-core nature comes in handy here: one core runs the main simulation loop, and the main graphic on the top of the VGA output; the other core generates the plots on the bottom half of the screen, and the Geiger-counter sound effect, and polls the buttons and encoders for user input. This is an interesting spread compared to the more usual GPU/CPU split we see on projects that use the RP2040 with VGA output.

An interesting wrinkle that has been declared a feature, not a bug, by the students behind this project, is that the framebuffer cannot keep up with all the neutrons in a meltdown simulation. Apparently the flickering and stuttering of frame-rate issues is “befitting of the meltdown scenario”. The idea that ones microcontroller melts down along with the simulated reactor is rather fitting, we agree. Check it out in a full walkthrough in the video below, or enjoy the student’s full writeup at the link above.

This project comes to us via Cornell University’s ECE 4760 course, which we’ve mentioned before. Thanks to [Hunter Adams] for the tipoff. You may see more student projects in the coming weeks.

 

Making a Brushless DC Motor Winding Machine

17 Junio 2025 at 23:00
BLDC wire winding machine

Over on his YouTube channel our hacker [Yuchi] is building an STM32 BLDC motor winding machine.

This machine is for winding brushless motors because manual winding is highly labor intensive. The machine in turn is made from four brushless motors. He is using the SimpleFOC library to implement closed-loop angle control. Closed-loop torque control is also used to maintain correct wire tension.

The system is controlled by an STM32G431 microcontroller. The motor driver used is the DRV8313. There are three GBM5208 75T Gimbal motors for close-loop angle control, and one BE4108 60T Gimbal motor for torque control. The torque control motor was built with this machine! [Yuchi] says that the Gimbal motors used are designed to be smooth, precise, and powerful at low speeds.

The components of the machine communicate with each other over a CAN bus. This simplifies wiring as components (such as motor controller boards) only require four connections.

Thanks to [Ben] for writing in to let us know about this project. If you’re interested in automated wire winding we have certainly covered that before here at Hackaday. You might like to check out Tips For Winding Durable Coils With Nice, Flat Sides or Coil Winding Machine Makes It Easy.

Bringing a Father Ted Joke to Life

8 Junio 2025 at 20:00
Talking Tape dispenser

Inspired by a gag from a mid-90s sitcom Father Ted, [Stephen] decided to create his own talking tape dispenser.

This project is a actually a follow-up to the first version of the dispenser he built back in 2022, and [Stephen] has documented the process thoroughly for anyone wanting to build their own. In the first version, he modified a tape dispenser to house a Raspberry Pi, enabling voice functionality. In the new version, he replaced the Raspberry Pi with a cheaper ESP8266 and designed an entirely 3D printed dispenser that looks closer to the screen-used version.

A clever change was replacing the rotary encoder with a custom encoder embedded in the printed parts. Using a photodiode and an LED, it measures the tape pulled from the spool. As you pull the tape, the encoder calculates the length and announces it through the speaker, just like in the show.

If you’re into prop recreations like this, be sure to check out the winners of our 2022 Sci-Fi Contest.

A Love Letter to Embedded Systems by V. Hunter Adams

29 Mayo 2025 at 02:00
Banner for article: A Love Letter to Embedded Systems.

Today we’re going to make a little digression from things that we do to look at perhaps why we do the things that we do. This one is philosophical folks, so strap yourselves in. We’ve had an interesting item arrive on the tips line from [Bunchabits] who wanted to let us know about a video, Love Letter to Embedded Systems, from [V. Hunter Adams].

[V. Hunter Adams] is Lecturer of Electrical Engineering at Cornell University and is on the web over here: vanhunteradams.com

In this forty three minute video [Hunter] makes an attempt to explain why he loves engineering, generally, and why he loves embedded systems engineering, specifically. He tries to answer why you should love engineering projects, what makes such projects special, and how you can get started on projects of your own. He discusses his particular interest in other unrelated subjects such as birds and birdsong, and talks a little about the genius of polymath Leonardo da Vinci.

He goes on to explain that engineering can be the vehicle to learn about other fields of endeavor, that the constraints in embedded systems are like the constraints of poetry, that embedded systems are the right level of complexity where you can still hold the details of a complete system in your head, and that embedded systems let you integrate with the physical world through sensors and actuators leading to a greater appreciation of physics and nature.

In his submission to the tips line [Bunchabits] said that [Hunter] was a communicator in the league of Carl Sagan and that he could do for embedded systems what Sagan did for physics and astronomy. Having watched this presentation we are inclined to agree. He is a thoughtful person and a cogent communicator.

If today’s philosophical digression has left you feeling… philosophical, then you might enjoy a little nostalgia, too. Here’s some old philosophical material that we covered here on Hackaday back in 2013 which held some interest: Hacking And Philosophy: An Introduction; The Mentor’s Manifesto; Hacker Crackdown: Part 1, Part II, Part III, Part IV; Future Tech And Upgrading Your Brain; and Surveillance State. All still as relevant today as it was over a decade ago.

Thanks to [Bunchabits] for sending this one in.

Vintage Intel 8080 runs on a Modern FPGA

27 Mayo 2025 at 05:00
Two hands soldering components on a purpble PCB

If you’re into retro CPUs and don’t shy away from wiring old-school voltages, [Mark]’s latest Intel 8080 build will surely spark your enthusiasm. [Mark] has built a full system board for the venerable 8080A-1, pushing it to run at a slick 3.125 MHz. Remarkable is that he’s done so using a modern Microchip FPGA, without vendor lock-in or proprietary flashing tools. Every step is open source.

Getting this vintage setup to work required more than logical tinkering. Mark’s board supplies the ±5 V and +12 V rails the 8080 demands, plus clock and memory interfacing via the M2GL005-TQG144I FPGA. The design is lean: two-layer PCB, basic level-shifters, and a CM32 micro as USB-to-UART fallback. Not everything went smoothly: incorrect footprints, misrouted gate drivers, thermal runaway in the clock section; but he managed to tackle it.

What sets this project apart is the resurrection of a nearly 50-year-old CPU. It’s also, how thoroughly thought-out the modern bridge is—from bitstream loading via OpenOCD to clever debugging of crystal oscillator drift using a scope. [Mark]’s love of the architecture and attention to low-level detail makes this more than a show-off build.

Intercepting and Decoding Bluetooth Low Energy Data for Victron Devices

26 Mayo 2025 at 14:00

[ChrisJ7903] has created two Ardiuno programs for reading Victron solar controller telemetry data advertised via BLE. If you’re interested in what it takes to use an ESP32 to sniff Bluetooth Low Energy (BLE) transmissions, this is a master class.

The code is split into two main programs. One program is for the Victron battery monitor and the other is for any Victron solar controller. The software will receive, dissect, decrypt, decode, and report the data periodically broadcast from the devices over BLE.

The BLE data is transmitted in Link-Layer Protocol Data Units (PDUs) which are colloquially called “packets”. In this particular case the BLE functionality for advertising, also known as broadcasting, is used which means the overhead of establishing connections can be avoided thereby saving power.

Decryption is handled with the the wolfSSL library and [ChrisJ7903] had nice things to say about the helpful people over at wolfSSL. The AES-CTR algorithm is used and seeded with the per-device encryption key, a nonce/salt in little-endian format, and the encrypted data.

[ChrisJ7903] relied heavily on technical documentation provided by Victron in order to decode the received data; some of that documentation is made available in the Git repo and ultimately everything is revealed in the code itself.

We’ve done heaps of BLE stuff here at Hackaday in the past. If you’re interested in BLE tech check out this rain gauge and this doorbell.

How to Build an STM32 Web Dashboard Using the Mongoose Wizard

26 Mayo 2025 at 02:00
Screen shot of Mongoose Wizard.

Today from the team at Cesanta Software — the people who gave us the open-source Mongoose Web Server Library and Mongoose OS — we have an article covering how to build an STM32 web dashboard.

The article runs through setting up a development environment; creating the dashboard layout; implementing the dashboard, devices settings, and firmware update pages; building and testing the firmware; attaching UI controls to the hardware; and conclusion.

The web dashboard is all well and good, but in our opinion the killer feature remains the Over-The-Air (OTA) update facility which allows for authenticated wireless firmware updates via the web dashboard. The rest is just gravy. In the video you get to see how to use your development tools to create a firmware file suitable for OTA update.

If you’re thinking this all looks a little familiar, that’s because we recently wrote about their web dashboard for the ESP32. This is the same again but emphasizing the STM32 support this time around. We originally heard about the Mongoose technology line all the way back in 2017!

Thanks to [Toly] for letting us know about this new howto.

The Need For Speed?

24 Mayo 2025 at 14:00

We wrote up a video about speeding up Arduino code, specifically by avoiding DigitalWrite. Now, the fact that DigitalWrite is slow as dirt is long known. Indeed, a quick search pulls up a Hackaday article from 2010 demonstrating that it’s fifty times slower than toggling the pin directly using the native pin registers, but this is still one of those facts that gets periodically rediscovered from generation to generation. How can this be new again?

First off, sometimes you just don’t need the speed. When you’re just blinking LEDs on a human timescale, the general-purpose Arduino functions are good enough. I’ve written loads of useful firmware that fits this description. When the timing requirements aren’t tight, slow as dirt can be fast enough.

But eventually you’ll want to build a project where the old slow-speed pin toggling just won’t cut it. Maybe it’s a large LED matrix, or maybe it’s a motor-control application where the loop time really matters. Or maybe it’s driving something like audio or video that just needs more bits per second. One way out is clever coding, maybe falling back to assembly language primitives, but I would claim that the right way is almost always to use the hardware peripherals that the chipmakers gave you.

For instance, in the end of the video linked above, the hacker wants to drive a large shift register string that’s lighting up an LED matrix. That’s exactly what SPI is for, and coming to this realization makes the project work with timing to spare, and in just a few lines of code. That is the way.

Which brings me to the double-edged sword that the Arduino’s abstraction creates. By abstracting away the chips’ hardware peripherals, it makes code more portable and certainly more accessible to beginners, who don’t want to learn about SPI and I2C and I2S and DMA just yet. But by hiding the inner workings of the chips in “user friendly” libraries, it blinds new users to the useful applications of these same hardware peripherals that clever chip-design engineers have poured their sweat and brains into making do just exactly what we need.

This isn’t really meant to be a rant against Arduino, though. Everyone has to start somewhere, and the abstractions are great for getting your feet wet. And because everything’s open source anyway, nothing stops you from digging deeper into the datasheet. You just have to know that you need to. And that’s why we write up videos like this every five years or so, to show the next crop of new hackers that there’s a lot to gain underneath the abstractions.

This article is part of the Hackaday.com newsletter, delivered every seven days for each of the last 200+ weeks. It also includes our favorite articles from the last seven days that you can see on the web version of the newsletter. Want this type of article to hit your inbox every Friday morning? You should sign up!

Honey, I Blew Up The Line Follower Robot

21 Mayo 2025 at 20:00
[Austin Blake] sitting on line follower cart in garage

Some readers may recall building a line-following robot during their school days. Involving some IR LEDs, perhaps a bit of LEGO, and plenty of trial-and-error, it was fun on a tiny scale. Now imagine that—but rideable. That’s exactly what [Austin Blake] did, scaling up a classroom robotics staple into a full-size vehicle you can actually sit on.

The robot uses a whopping 32 IR sensors to follow a black line across a concrete workshop floor, adjusting its path using a steering motor salvaged from a power wheelchair. An Arduino Mega Pro Mini handles the logic, sending PWM signals to a DIY servo. The chassis consists of a modified Crazy Cart, selected for its absurdly tight turning radius. With each prototype iteration, [Blake] improved sensor precision and motor control, turning a bumpy ride into a smooth glide.

The IR sensor array, which on the palm-sized vehicle consisted of just a handful of components, evolved into a PCB-backed bar nearly 0.5 meters wide. Potentiometer tuning was a fiddly affair, but worth it. Crashes? Sure. But the kind that makes you grin like your teenage self. If it looks like fun, you could either build one yourself, or upgrade a similar LEGO project.

PentaPico: A Pi Pico Cluster For Image Convolution

20 Mayo 2025 at 08:00
The five picos on two breadboards and the results of image convolution.

Here’s something fun. Our hacker [Willow Cunningham] has sent us a copy of his homework. This is his final project for the “ECE 574: Cluster Computing” course at the University of Maine, Orono.

It was enjoyable going through the process of having a good look at everything in this project. The project is a “cluster” of 5x Raspberry Pi Pico microcontrollers — with one head node as the leader and four compute nodes that work on tasks. The software for the both types of node is written in C. The head node is connected to a workstation via USB 1.1 allowing the system to be controlled with a Python script.

The cluster is configured to process an embarrassingly parallel image convolution. The input image is copied into the head node via USB which then divvies it up and distributes it to n compute nodes via I2C, one node at a time. Results are given for n = {1,2,4} compute nodes.

It turns out that the work of distributing the data dwarfs the compute by three orders of magnitude. The result is that the whole system gets slower the more nodes we add. But we’re not going to hold that against anyone. This was a fascinating investigation and we were impressed by [Willow]’s technical chops. This was a complicated project with diverse hardware and software challenges and he’s done a great job making it all work and in the best scientific tradition.

It was fun reading his journal in which he chronicled his progress and frustrations during the project. His final report in IEEE format was created using LaTeX and Overleaf, at only six pages it is an easy and interesting read.

For anyone interested in cluster tech be sure to check out the 256-core RISC-V megacluster and a RISC-V supercluster for very low cost.

Making Sure the Basement Stays Dry with an ESP8266

17 Mayo 2025 at 08:00
A high level pictorial schematic of the basement monitor.

The hack we have for you today is among our most favorite types of hack: a good, honest, simple, and well documented implementation that meets a real need. Our hacker [Solo Pilot] has sent in a link to their basement monitor.

The documentation is quite good. It’s terse but comprehensive with links to related information. It covers the background, requirements, hardware design, sensors, email and SMS alerts, software details, and even has some credits at the end.

Implementing this project would be a good activity for someone who has already made an LED flash and wants to take their skills to the next level by sourcing and assembling the hardware and then configuring, compiling, deploying, and testing the software for this real-world project.

To make this project work you will need to know your way around the Arduino IDE in order to build the software from the src.zip file included with the documentation (hint: extract the files from src.zip into a directory called AHT20_BMP280 before opening AHT20_BMP280.ino and make sure you add necessary boards and libraries).

One feature of the basement monitor that we would like to see is a periodic “everything’s okay” signal from the device, just so we can confirm that the reason we’re not getting an alarm about flooding in the basement is because there is no flood, and not because the battery ran dead or the WiFi went offline.

If you’ve recently started on your journey into where electronics meets software a project such as this one is a really great place to go next. And of course once you are proficient with the ESP8266 there are a thousand such projects here at Hackaday that you can cut your teeth on. Such as this clock and this fault injection device.

Smart Terrarium Run By ESP32

Por: Lewin Day
15 Mayo 2025 at 08:00

A terrarium is a little piece of the living world captured in a small enclosure you can pop on your desk or coffee table at home. If you want to keep it as alive as possible, though, you might like to implement some controls. That’s precisely what [yotitote] did with their smart terrarium build.

At the heart of the build is an ESP32 microcontroller. It’s armed with temperature and humidity sensors to detect the state of the atmosphere within the terrarium itself. However, it’s not just a mere monitor. It’s able to influence conditions by activating an ultrasonic fogger to increase humidity (which slightly impacts temperature in turn). There are also LED strips, which the ESP32 controls in order to try and aid the growth of plants within, and a small OLED screen to keep an eye on the vital signs.

It’s a simple project, but one that serves as a basic starting point that could be readily expanded as needed. It wouldn’t take much to adapt this further, such as by adding heating elements for precise temperature control, or more advanced lighting systems. These could be particularly useful if you intend your terrarium to support, perhaps, reptiles, in addition to tropical plant life.

Indeed, we’ve seen similar work before, using a Raspberry Pi to create a positive environment to keep geckos alive! Meanwhile, if you’re cooking up your own advanced terrarium at home, don’t hesitate to let us know.

LED Layer Makes Plywood Glow

14 Mayo 2025 at 23:00

Plywood is an interesting material: made up of many layers of thin wood plys, it can be built up into elegantly curved shapes. Do you need to limit it to just wood, though? [Zach of All Trades] has proved you do not, when he embedded a light guide, LEDs, microcontrollers and touch sensors into a quarter inch (about six millimeter) plywood layup in the video embedded below.

He’s using custom flexible PCBs, each hosting upto 3 LEDs and the low-cost PY32 microcontroller. The PY32 drives the RGB LEDs and handles capacitive touch sensing within the layup. In the video, he goes through his failed prototypes and what he learned: use epoxy, not wood glue, and while clear PET might be nice and bendy, acrylic is going to hold together better and cuts easier with a CO2 laser.

The wood was sourced from a couple of sources, but the easiest was apparently skateboard kits– skateboards are plywood, and there’s a market of people who DIY their decks. The vacuum bag setup [Zach] used looks like an essential tool to hold together the layers of wood and plastic as the epoxy cures. To make the bends work [Zach] needed a combination of soaking and steaming the maple, before putting it into a two-part 3D printed mold. The same mold bends the acrylic, which is pre-heated in an oven.

Ultimately it didn’t quite come together, but after some epoxy pour touch-up he’s left with a fun and decorative headphone stand. [Zach] has other projects in mind with this technique, and its got our brains percolating as well. Imagine incorporating strain gauges to drive the LEDs so you could see loading in real time, or a sound-reactive speaker housing. The sky’s the limit now that the technique is out there, and we look forward to see what people make of it.

The last time we heard from [Zach of All Trades] he was comparing ten cent micro-controllers; it looks like the PY32 came out on top. Oddly enough, this seems to be the first hack we have featuring it. If you’ve done something neat with ten cent micros (or more expensive ones) or know someone who did, don’t forget to let us know! We love tips. [Zach] sent in the tip about this video, and his reward is gratitude worth its weight in gold.

A Brain Transplant for a Philips Smart Lamp

14 Mayo 2025 at 11:00

As the saying goes, modern problems require modern solutions. When the modern problem is that your smart light is being hijacked by the neighbors, [Wjen]’s modern solution is to reverse engineer and replace the mainboard.

The light in question is a Phillips Hue Ambiance, and [Wjen]’s excellently-documented six part series takes us through the process of creating a replacement light driver. It’s a good read, including reverse-engineering the PWM functions to get the lights to dim exactly like stock, and a dive into the Zigbee protocol so his rebuild light could still talk to the Philips Hue hub. The firmware [Wjen] wrote for the ESP32C6 he chose to use for this project is on GitHub, with the PCB in a second repo.

We want to applaud [Wjen] for his excellent documentation and open-sourcing (the firmware and PCB are under GPL v3). Not only do we get enough information to replicate this project perfectly if we so choose, but by writing out his design process, [Wjen] gives everyone reading a good head start in doing something similar with other hardware. Even if you’re scratching your head wondering why a light switch isn’t good enough anymore, you have to appreciate what [Wjen] is offering the community.

We’ve covered domestic brain transplants in the past — which is easier in this sort of light than the close confines of a smart bulb. If you’re still wondering why not just use a light switch, perhaps you’d rather hack the light to run doom instead.

Before you go, can we just take a moment to appreciate how bizarre the world has become that we have a DOOM-capable computer to run fancy light fixture? If you’re using what might have been a decent workstation in days of yore to perform a painfully mundane task, let us know on the tips line.

Exploring the RP2350’s UART-Bootloader

11 Mayo 2025 at 14:00

The RP2350 has a few advantages over its predecessor, one of which is the ability to load firmware remotely via UART, as [Thomas Pfilser] has documented on his blog and in the video below.

[Thomas] had a project that needed more PWM than the RP2350 could provide, and hit upon the idea of using a second RP2350 as a port expander. Now, one could hard-code this, but dealing with two sets of firmware on one board can be annoying. That’s where the UART bootloader comes in: it will allow [Thomas] to program the port-expander RP2350 using the main microcontroller. Thus he only has to worry about one firmware, speeding up development.

There are limits to this technique: for one, your code must fit into the RP2350’s RAM– but the chip has 512 kB. While 640 kB should be enough for anyone, 512 kB is plenty for the port-expander [Thomas] is working on. The second drawback is that your device now has a boot time of a second or so, since the UART connection is not exactly high-bandwidth. Third, using UART on the same pins as the bootloader within the program is a bit tricky, though [Thomas] found a solution that may soon be in the SDK.

[Thomas] also wanted to be able to perform this trick remotely, which isn’t exactly UART’s forte. RS-485 comes to the rescue, via TI’s THVD1450. That worked reliably at the 10m cable length used for the test. [Thomas] sees no reason it could not work over much longer distances. ([Thomas] suggests up to 100 m, but the baud rate is fairly low, so we wouldn’t be surprised if you could push it quite a bit further than that. The standard is good out to a kilometer, after all.) For all the wrinkles and links to tips and solutions, plus of course [Thomas]’s code, check out the blog. If you want to listen to the information, you can check out the video below.

We’re grateful to [Thomas] for letting us know about his project via the tip line, like we are to everyone who drops us a tip. Hint, hint.

Given that it is the new chip on the block, we haven’t seen too many hacks with the RP2350 yet, but they’re starting to trickle in. While a UART bootloader is a nice feature to have, it can also introduce a security risk, which is always something to keep in mind.

Web Dashboard and OTA Updates for the ESP32

10 Mayo 2025 at 08:00
Mongoose Wizard new project dialog.

Today we are happy to present a web-based GUI for making a web-based GUI! If you’re a programmer then web front-end development might not be your bag. But a web-based graphical user interface (GUI) for administration and reporting for your microcontroller device can look very professional and be super useful. The Mongoose Wizard can help you develop a device dashboard for your ESP32-based project.

In this article (and associated video) the Mongoose developers run you through how to get started with their technology. They help you get your development environment set up, create your dashboard layout, add a dashboard page, add a device settings page, add an over-the-air (OTA) firmware update page, build and test the firmware, and attach the user-interface controls to the hardware. The generated firmware includes an embedded web server for serving your dashboard and delivering its REST interface, pretty handy.

You will find no end of ESP32-based projects here at Hackaday which you could potentially integrate with Mongoose. We think the OTA support is an excellent feature to have, but of course there are other ways of supporting that functionality.

Thanks to [Toly] for this tip.

❌
❌