Vista Normal

Hay nuevos artículos disponibles. Pincha para refrescar la página.
AnteayerSalida Principal

Hosting Your Own PixMob Party Made Easy

Por: Tom Nardi
29 Junio 2024 at 05:00

Over the last few years, it’s been increasingly common for concertgoers to be handed a light-up bracelet from PixMob that synchronizes with the others in the crowd to turn the entire audience into a music visualizer. They’re a clever way of enhancing the concert experience, but unfortunately, they don’t do anything once you leave the show. Or at least, that used to be the case.

We’ve seen efforts to reverse engineer the IR (and occasionally radio) signals that drive these PixMob devices, but since we checked in last it seems like things have gotten a lot easier for the home gamer. [David Pride] has recently posted a brief write-up that shows how quickly and easily it is to get these devices fired up using nothing more exotic than an Arduino, an IR LED, and an audio sensor module.

With the audio sensor module connected to the Arduino’s digital input and the IR LED wired to digital out, all you need to do is flash firmware to the board and start playing some beats. The source code [David] has provided is a a remixed version of what’s previously been published by [Carlos Ganoza], which, in this case, has been tweaked to make the lighting patterns less random.

Presumably, this is to make the devices behave more like they do during an actual concert, but since nobody at Hackaday is cool enough to have seen a live musical performance in the last decade, we’re not really sure. All we can say is that the effect looks pretty sweet in the demo video.

Back in 2019, we saw a teardown of an early PixMob device, and by 2022, the efforts to reverse engineer their IR control protocol were well underway. We’re glad to see things have progressed to the point that you can piece together a transmitter from what’s in the parts bin, as it means at least some of these devices will have a lifespan longer than a single concert.

Enjoy Totality Every Day With This Personal Eclipse Generator

27 Junio 2024 at 08:00

There have been a couple of high-profile solar eclipses lately, but like us, you probably missed the news of the one that passed over Munich in 2019. And every day since then, in fact, unless you were sitting in a particular spot: the couch of one [Bernd Kraus], who has his very own personal eclipse generator.

We’ll attempt to explain. Living in an apartment with a gorgeous western view of Munich is not without its cons, chief among which is the unobstructed exposure to the setting sun. Where most people would opt for a window treatment of some sort to mitigate this, [Bernd] felt that blotting out the entire view was a heavy-handed solution to the problem. His solution is a window-mounted X-Y gantry that dangles a cutout of the moon in just the right place to blot out the sun. An Arduino uses the time and date to calculate the position of the sun as it traverses the expansive window and moves the stepper motors to keep the moon casting its shadow in just the right place: on his face as he sits in his favorite spot on the couch.

There are a couple of time-lapse sequences in the video below, as well as a few shots of the hardware. We know this isn’t an actual coronagraph, but the effect is pretty cool, and does resemble an eclipse, at least in spirit. And it goes without saying that we applaud the unnecessary complexity embodied by this solution.

2024 Business Card Challenge: Go Tic-Tac-Toe-to-Toe with Them

24 Junio 2024 at 23:00
A PCB business card that plays tic-tac-toe with red and blue LEDs.

There is perhaps no more important time to have a business card than when you’re in college, especially near the end when you’re applying for internships and such. And it’s vital that you stand out from the crowd somehow. To that end, Electrical & Computer Engineer [Ryan Chan] designed a tidy card that plays tic-tac-toe.

Instead of X and O, the players are indicated by blue and red LEDs. Rather than having a button at every position, there is one big control button that gets pressed repeatedly until your LED is in the desired position, and then you press and hold to set it and switch control to the other player. In addition to two-player mode, the recipient of your card can also play alone against the ATMega.

The brains of this operation is an ATMega328P-AU with the Arduino UNO bootloader for ease of programming. Schematic and code are available if you want to make your own, but we suggest implementing some type of changes to make it your own. Speaking of, [Ryan]  has several next steps in mind, including charlieplexing the LEDs, using either USB-C or a coin cell for power, upgrading the AI, and replacing the control button with a capacitive pad or two. Be sure to check it out in action in the two videos after the break.

2024 Business Card Challenge

An Arduino Nano Clone in a DIP-Sized Footprint

22 Junio 2024 at 23:00

Nobody doubts the utility of the Arduino Nano and its many clones, and chances are good you’ve got at least one or two of the tiny dev boards within arm’s reach right now. But as small as it is, the board still takes up a fair amount of real estate, especially on solderless breadboards during the prototyping phase of a project. Wouldn’t it be nice to shrink down the Nano just a bit and regain a couple of rows for plugging in components and jumpers?

It looks like [Albert van Dalen] thought so, and he managed to get a Nano’s functionality — and then some — onto a DIP-26 footprint. The aptly named “Nano DIP,” which at 33 mm x 10 mm — about the same size as the ATmega328 on the Arduino Uno — will tickle the miniaturization fans out there. The board is built around an ATtiny3217 and has almost all of the Nano’s features, like a USB port, reset button, built-in LEDs, 5 V regulator, and preloaded bootloader. Its big extra feature is the 350-kilosamples-per-second 8-bit DAC, while sacrificing external crystal pins and a 3.3 V regulator.

To make the board cheap enough to manufacture, [Albert] elected a minimum component size of 0402, which made squeezing all the parts onto the board challenging. The MCU barely fits between the header pin pads, and the Micro USB jack had to be a vertical-mount type. It does the business, though, so if you’re looking to free up a little breadboard space, check it out.

Tight Handheld CRT Asteroids Game Curses in Tuscan

12 Junio 2024 at 20:00

How many Arduini does it take to make a tiny CRT Asteroids game? [Marco Vallegi] of MVV Blog’s answer: two. One for the game mechanics and one for the sound effects. And the result is a sweet little retro arcade machine packed tightly into a very nicely 3D printed case.

If you want to learn to curse like a Tuscan sailor, you can watch the two-part video series, embedded below, in its entirety. Otherwise, we have excerpted the good stuff out of the second video for you.

For instance, we love the old-school voice synthesis sound of the Speak and Spell. Here, playback is implemented using the Talkie library for Arduino, and [Marco] is using the BlueWizard software on a dated Macbook for recording and encoding. (We’d use the more portable Python Wizard ourselves.) Check out [Marco] tweaking the noise parameters here to get a good recording.

And since the Talkie Arduino library uses PWM on a digital output pin to create the audio, the high-frequency noise was freaking out his simple transistor amplifier. Here, [Marco] adds a feedback capacitor to cancel that high-frequency hash out.

The build needs to be quite compact, and the stacked-Arduino-with-PCB-case design is tight. And the 3D-printed case has a number of nice refinements that you might like. We especially like the use of thin veneers that cover the case all around with the build-plate’s surface texture, and the contrasting “Asteroids” logos are very nice.

All in all, this is a really fun build that’s also full of little details that might help you with your own projects. Heck, even if it just encourages you to play around with the Talkie library, it’s worth your time in our opinion. And while you’re at it, you can turn on the subtitles and pick up some vocab that’ll make your nonna roll over in her grave.

Part One: Rebuilding the CRT

Part Two: Adding Sound

Thanks [ZioTibia81] for the tip!

VFD Tube Calculator Shows off Wide Array of Skills

Por: Tom Nardi
4 Junio 2024 at 23:00

With all the tools and services available to us these days, it’s hard to narrow down a set of skills that the modern hacker or maker should have. Sure, soldering is a pretty safe bet, and most projects now require at least a little bit of code. But the ability to design 3D printable parts has also become increasingly important, and you could argue that knowledge of PCB design and production is getting up there as well. With home laser cutters on the rise, a little 2D CAD wouldn’t hurt either. So on, and so on.

If you ever wanted an example of the multitude of skills that can go into a modern hardware project, take a look at this gorgeous Vacuum Fluorescent Display (VFD) tube calculator built by [oskar2517]. As fantastic as the final product is, we were particularly impressed with everything it took to get this one over the finish line.

A .7 mm walnut veneer covers the pieced together plywood frame.

It’s got it all: 3D printed parts, a laser cut wooden frame, a custom PCB, and even a bit of old school woodworking. To top it all off, the whole thing has been meticulously documented.

But what’s perhaps most impressive here is that [oskar2517] was approaching most of these techniques for the first time. They had never before worked with IV-12 tubes, designed an enclosure in 3D, had parts laser cut, applied wood veneer, or designed a custom PCB. They did have solid experience writing code in C at least, which did make developing the Arduino firmware a bit easier.

Although they might look outwardly similar, VFD tubes like the IV-12 are easier to work with than Nixie tubes thanks to their lower operating voltage. That said, a look through our archives shows that projects using Nixies outnumber VFD tubes by nearly four to one, so there’s no shortage of folks willing to take on the extra effort for that sweet warm glow.

2024 Business Card Contest: A Game for Two

30 Mayo 2024 at 23:00
A PCB business card with a built-in 4x4 tic-tac-toe game on the back.

If you want to make a good first impression on someone, it seems like the longer you can keep them talking, the better. After all, if they want to keep talking, that’s a pretty good sign that even if you don’t become business partners, you might end up friends. What better way to make an acquaintance than over a friendly game of tic-tac-toe?

This one will probably take them by surprise, being a 4×4 matrix rather than the usual 3×3, but that just makes it more interesting. The front of the card has all the usual details, and the back is a field of LEDs and micro switches. Instead of using X and O, [Edison Science Corner] is using colors — green for player one, and red for player two. Since playing requires the taking of turns, the microcontroller lights up green and red with alternating single-button presses.

Speaking of, the brains of this operation is an ATMega328P-AU programmed with Arduino. If you’d like to make your own tic-tac-toe business card, the schematic, BOM, and code are all available. Be sure to check out the build and demo video after the break.

2024 Business Card Challenge

GPS at Any Speed

13 Mayo 2024 at 20:00

[Mellow_Labs] was asked to create a GPS speedometer. It seems simple, but of course, the devil is in the details. You can see the process and the result in the video below.

We have to admit that he does things step-by-step. The first step was to test the GPS module’s interface. Then, he tried computing the speed from it and putting the result on a display. However, testing in the field showed that the display was not suitable for outdoor use.

That prompted another version with an OLED screen. Picking the right components is critical. It struck us that you probably need a fast update rate from the GPS, too, but that doesn’t seem to be a problem.

The other issue is, of course, that you have to have a GPS lock for this to work. Inside the urban canyon, you might be better served with a different method. You might think about an accelerometer, but while that’s easy in theory (velocity is the integration of acceleration), in practice, errors and other issues make that a tough way to do it.

The project wraps up with a nice case and some special display modes. We were sorry that the code and STLs were available “on request,” but you’d probably do it differently anyway. This isn’t the first GPS speedometer we’ve seen. Ever wonder how fast your dog is going?

Split-Flap Clock Uses Magnets Everywhere

10 Mayo 2024 at 23:00
A DIY split-flap clock in red, black, and white.

While split-flap alarm clocks once adorned heavy wood nightstands in strong numbers, today the displays are most commonly found in train stations and airports. Hey, at least they’re still around, right? Like many of us, [The Wrench] has always wanted to make one for themselves, but they actually got around to doing it.

A DIY split-flap clock and its magnetic base.This doesn’t seem like a beginner-friendly project, but [The Wrench] says they were a novice in 3D design and so used Tinkercad to design all the parts. After so many failures, they settled on a design for each unit that uses a spool to attach the flaps, which is turned by a stepper motor.

A small neodymium magnet embedded in the primary gear and a Hall effect sensor determine where the stepper motor is, and in turn, which number is displayed. Everything is handled by an Arduino Nano on a custom PCB.

Aside from the sleek, minimalist look, our favorite part is that [The Wrench] used even more magnets to connect each display segment to the base. You may have noticed that there are only three segments, because the hours are handled by a single display that has flaps for 10, 11, and 12. This makes things simpler and gives the clock an interesting look. Be sure to check out the build video after the break.

Want to build a more complicated clock? Try suspending sand digits in the air with persistence of vision.

ardEEG Lowers the Cost of Brain-Computer Interfaces

Por: Tom Nardi
9 Mayo 2024 at 05:00

Considering the incredible potential offered by brain-computer interfaces (BCIs), it’s no wonder there are so many companies scrambling to make their mark in the field. Some see it as an assistive technology, while others imagine it as the future of interactive entertainment. Regardless of the application, the technology has yet to make much inroads with the DIY crowd — largely due to the complexity and cost of the hardware involved.

But that might change in the near future thanks to projects like ardEEG from [Ildar Rakhmatulin]. This open source shield mounts to the top of the Arduino UNO R4 WiFi and features eight channels for collecting electroencephalogram (EEG) data, such as from a dry electrode cap. The signals can then be processed on the computer using the provided Python example code. From there, the raw data can be visualized or plugged into whatever application you have in mind.

Why target the relatively uncommon WiFi version of the Uno? It’s probably obvious for those with experience with this kind of hardware, but for safety, the system needs complete electrical isolation. The Arduino and shield are powered by a common USB battery bank, and all communication is done over WiFi. Even still, the documentation is clear that the ardEEG is not a medical device, and hasn’t been certified by any regulatory agency — its use is entirely at your own risk.

[Ildar] tells us the hardware will be available soon and should cost under $250, making it one of the most affordable BCI development platforms out there. As with his earlier PiEEG project, the hope is that basing the system around a common device in the hacker and maker scene will help democratize access to BCI research.

❌
❌