Vista Normal

Hay nuevos artículos disponibles. Pincha para refrescar la página.
AnteayerSalida Principal

Solving Cold Cases With Hacked Together Gear

Por: Tom Nardi
28 Junio 2024 at 11:00

People go missing without a trace far more commonly than any of us would like to think about. Of course the authorities will conduct a search, but even assuming they have the equipment and personnel necessary, the odds are often stacked against them. A few weeks go by, then months, and eventually there’s yet another “cold case” on the books and a family is left desperate for closure.

But occasionally a small team or an individual, if determined enough, can solve such a case even when the authorities have failed. Some of these people, such as [Antti Suanto] and his brother, have even managed to close the books on multiple missing person cases. In an incredibly engrossing series of blog posts, [Antti] describes how he hacked together a pair of remotely operated vehicles to help search for and ultimately identify sunken cars.

The first he built was intended to perform reconnaissance using a consumer side-scan sonar unit. While these devices are designed to be mounted to a “real” boat, [Antti] didn’t have the room at home for one. So he did some research and eventually settled on an affordable solution that combined a watertight plastic box with pontoons made out of PVC pipes. We’ve seen similar designs before, and have always been impressed with the stability and payload capacity offered by such an arrangement given its low cost and ease of assembly.

In an interesting twist [Antti] decided to outfit his craft with quadcopter motors and propellers to create a sort of airboat, which would keep it from getting tangled up in weeds. We also appreciate the no-nonsense method of viewing the sonar’s output remotely — all they had to do was take an old smartphone, point its camera at the unit, and open up a video calling application.

While having the sonar data would help the brothers identify potential targets on the bottom, it wasn’t enough to make a positive identification. For that, they’d have to go down there and directly image the object being investigated. So the second project was a remotely operated vehicle (ROV). Its PVC frame might look a bit low-tech, but [Antiii] designed the central “dry hull” to survive at depths of up to 100 meters (328 feet). With cameras, lights, a Raspberry Pi, and an Arduino Mega pulling it all together, the finished product is a formidable underwater explorer.

Combined with diligent research on the individuals who went missing and the areas in which they were last seen, the brothers were able to use these vehicles to solve a pair of missing persons cases that had been open for more than a decade. Their work earned them the personal thanks of the President of Finland, and a medal that’s generally only given to police officers.

Our hats off to this intrepid duo — surely there’s no more noble a pursuit than dedicating your skills and free time to help others.

Programming Robots is Hard, Figuring out How to Make it Easier is Harder

18 Junio 2024 at 23:00

[Benjie Holson] is an experienced roboticist and wrote an interesting article published on IEEE Spectrum about how the idea most people have of non-roboticists is a myth, and efforts to target this group with simplified robotic frameworks tend to be doomed.

Now, let’s make a couple things absolutely clear right up front: He is not saying robots shouldn’t be easier to program, nor is he saying that non-roboticists literally do not exist (of course they do.) The issues he’s highlighting really come down to product design.

[Benjie] points out that programming robots is super hard, but it’s also hard in more than one way and for more than one reason. And when people try to create a product to make it easier, they tend to commit two big product design no-no’s: they focus on the wrong hard parts, and they design their product for a vaguely-defined audience that doesn’t really exist. That group is the mythical non-roboticist.

These are actually very solid points to make in terms of product design in general. Designing a product that solves the wrong problems for a poorly-defined group isn’t exactly a recipe for success. [Benjie]’s advice on making a truly effective and useful API framework that genuinely lowers the bar of complexity in a useful way is similarly applicable to product design in general.

His first piece of advice is not to design for poorly-defined amorphous groups. Your product should serve actual needs of actual users. If you cannot name three people you have actually spoken to who would be helped by your product, you are designing for an amorphous (and possibly imaginary) group.

The second is to design as though your users are just as smart as you are, just less tolerant of problems stemming from rough edges like compatibility and configuration issues. Remove those so that your users can get useful work done without having to re-invent the wheel, or resort to workarounds.

Robotic frameworks like ROS are useful and extensible, but whenever someone attempts to focus on creating a simplified framework, [Benjie] says they tend to step on the same rakes. It’s a mistake [Benjie] has committed himself, and see repeated by others. We think his advice is good product design advice in general, whether for designing APIs or something else.

Screwless Eyeballs Are a Lesson in Design-For-Assembly

8 Junio 2024 at 23:00

[Will Cogley] makes eyeballs; hey, everyone needs a hobby, and we don’t judge. Like all his animatronics, his eyeballs are wondrous mechanisms, but they do tend toward being a bit complex, especially in terms of the fasteners needed to assemble them.

But not anymore. [Will] redid his eyeball design to be as easy to assemble as possible, and the results are both impressive and instructive. His original design mimics real eyeballs quite well, but takes six servos and a large handful of screws and nuts, which serve both to attach the servos to the frame and act as pivots for the many, many linkages needed. The new design has snap-fit pivots similar to Lego Technic axles printed right into the linkage elements, as well as snap connectors to hold the servos down. This eliminates the need for 45 screws and cuts assembly time from 30 minutes to about six, with no tools required. And although [Will] doesn’t mention it, it must save a bunch of weight, too.

Everything comes at a cost, of course, and such huge gains in assembly ease are no exception. [Will] details this in the video below, including printing the parts in the right orientation to handle the forces exerted both during assembly and in use. And while it’s hard to beat a five-fold reduction in assembly time, he might be able to reduce that even more with a few print-in-place pivots.

Gears are Old and Busted, Capstans are Cool

4 Junio 2024 at 02:00

Zero backlash, high “gear” reduction, high torque transparency, silent operation, and low cost. What is this miracle speed reduction technology, you ask? Well, it’s shoelaces and a bunch of 3D printed plastic, at least in [Aaed Musa]’s latest installment in his series on developing his own robot dog.

OK, the shoelaces were only used in the first proof of concept. [Aaed] shortly upgrades to steel cable, and finds out that steel fatigues and snaps after a few hours. He settles on Dyneema DM-20, a flexible yet non-stretching synthetic rope.

Before it’s all over, he got a five-bar linkage plotting with a pencil on the table and a quadriped leg jumping up and down on the table — to failure. All in all, it points to a great future, and we can’t wait to see the dog-bot that’s going to come out of this.

There’s nothing secret about using capstan drives, but we often wonder why we don’t see cable-powered robotics used more in the hacker world. [Aaed] makes the case that it pairs better with 3D printing than gears, where the surface irregularities really bind. If you want to get a jumpstart, the test fixture that he’s using is available on GitHub.

If you want to learn more about capstan drives, you absolutely need to check out our own [Sonya Vasquez]’s Cable Mechanism Maths. She brought some demos of her gear reduction mechanisms to Supercon, and they just feel like butter. (If I were a robot, that’s how I’d want my knees to feel.)

Hype Robot Rocks Out With The Twitch Chat

Por: Lewin Day
25 Mayo 2024 at 08:00

Have you ever wished for an automaton that can get the party started, raise the roof, and all that? You’ll want to meet [DJ Pfeif]’s Flippin Rhobot, then. He’s a hype bot from the world of Twitch streaming, and he apparently knows how to party.

Flippin Rhobot is controlled by an ESP32 that listens into the chat on [DJ Pfeif]’s stream. He’s got a vaguely humanoid form, and he can rotate on the spot and wave his arms in the air courtesy of a few servos. He’s also got a little computer terminal that displays the show’s “Hack the Planet” logo when he turns to face the screen. His body also features some addressable LEDs that flash and dance on command.

[DJ Pfeif] does a good job of explaining the project, and includes the code that laces everything together. Interfacing with Twitch chat can be fun, and we’ve featured a guide on doing just that before, too.

If you’re building your own roboticized hype machine, don’t hesitate to let us know. Otherwise, consider musing on the very idea of humanoid robots as a whole!

Tentacle Robot Wants to Hold You Gently

24 Mayo 2024 at 23:00
Twelve pink tentacles are wrapped around a small, green succulent plant. The leaves seem relatively undisturbed. They are dangling from brass and white plastic pressure fittings attached to a brass circle.

Human hands are remarkable pieces of machinery, so it’s no wonder many robots are designed after their creators. The amount of computation required to properly attenuate the grip strength and position of a hand is no joke though, so what if you took a tentacular approach to grabbing things instead?

Inspired by ocean creatures, researchers found that by using a set of pneumatically-controlled tentacles, they could grasp irregular objects reliably and gently without having to faff about with machine learning or oodles of sensors. The tentacles can wrap around the object itself or intertwine with each other to encase parts of an object in its gentle grasp.

The basic component of the device is 12 sections “slender elastomeric filament” which dangle at gauge pressure, but begin to curl as pressure is applied up to 172 kPa. All of the 300 mm long segments run on the same pressure source and are the same size, but adding multiple sized filaments or pressure sources might be useful for certain applications.

We wonder how it would do feeding a fire or loading a LEGO train with candy? We also have covered how to build mechanical tentacles and soft robots, if that’s more your thing.

Almost Breaking The World Record For The Tiniest Humanoid Robot, But Not Quite

Por: Lewin Day
23 Mayo 2024 at 20:00

Did you know there is a Guinness World Record for the smallest humanoid robot? We didn’t either, but apparently this is a challenge attracting multiple competitors. [Lidor Shimoni] had a red hot go at claiming the record, but came up ever so slightly short. Or tall.

The former record holder was measured at 141 mm, so [Lidor] had to beat that. He set about building a humanoid robot 95 mm tall, relying on off-the-shelf parts and 3D-printed components of his own design. An ESP32 served as the brains of the operation, while the robot, named Tiny Titan, got big flat feet to make walking relatively stable and controlled. Small servos were stacked up to actuate the legs and create a suitably humanoid robot to claim the title.

Sadly, [Lidor] was pipped to the post. Some procrastinating in finishing the robot and documentation saw another rival with a 60mm robot take the record. It’s not 100% clear what Guinness requires for someone to take this record, but it seems to involve a robot with arms, legs, and some ability to walk.

Sometimes robots are more fun when they’re very small. If you’re developing your own record-breaking automatons, drop us a line won’t you?

Möbius String Robot Goes Round and Round

19 Mayo 2024 at 08:00

While it doesn’t look like a traditional robot, the hydrogel robot from [Zi Liang Wu] forms a möbius strip and can be activated by light. They also experimented with shaping the hydrogels as a Seifert ribbon.

The key is that the hydrogels contain gold nanoparticles. Light heats the gold particles and this causes the hydrogels to move. The connections between the strips of hydrogels causes them to move in predictable ways. You can see a video about the experiments below.

These robots aren’t going to be for warehouse or factory work. But they can do tasks like collecting plastic beads, something difficult for conventional robots to do. They also hope to demonstrate that these soft robots could work in the body for taking samples or delivering a drug, although it isn’t apparent how light would get to them inside your body.

The dark side of the material tends to turn towards the light. The continuous loop structure means it never runs to the end of its travel. Watching it move on a string is pretty impressive.

Crawling and slithering robots may be the answer for certain specialized applications. After all, it works well in nature.

Emulating Biology For Robots With Rolling Contact Joints

Por: Maya Posch
17 Mayo 2024 at 20:00

Joints are an essential part in robotics, especially those that try to emulate the motion of (human) animals. Unlike the average automaton, animals are not outfitted with bearings and similar types of joints, but rather rely sometimes on ball joints and a lot on rolling contact joints (RCJs). These RCJs have the advantage of being part of the skeletal structure, making them ideal for compact and small joints. This is the conclusion that [Breaking Taps] came to as well while designing the legs for a bird-like automaton.

These RCJs do not just have the surfaces which contact each other while rotating, but also provide the constraints for how far a particular joint is allowed to move, both in the forward and backward directions as well as sideways. In the case of the biological version these contact surfaces are also coated with a constantly renewing surface to prevent direct bone-on-bone contact. The use of RCJs is rather common in robotics, with the humanoid DRACO 3 platform as detailed in a 2023 research article by [Seung Hyeon Bang] and colleagues in Frontiers in Robotics and AI.

The other aspect of RCJs is that they have to be restrained with a compliant mechanism. In the video [Breaking Taps] uses fishing line for this, but many more options are available. The ‘best option’ also depends on the usage and forces which the specific joint will be subjected to. For further reading on the kinematics in robotics and kin, we covered the book Exact Constraint: Machine Design Using Kinematic Principles by [Douglass L. Blanding] a while ago.

This Robot Picks Locks, If You’re Very Patient

5 Mayo 2024 at 11:00

We all know the Hollywood trope of picking a lock with a paperclip, and while it certainly is doable, most reputable locks require slightly more sophisticated tools to pick effectively. That’s not to say that wire is off the table for locksports, though, as this cool lock-picking robot demonstrates.

The basics behind [Sparks and Code]’s design are pretty simple. Locks are picked by pushing pins up inside the cylinder until they line up with the shear plane, allowing the cylinder to turn. Normally this is done a pin at a time with a specialized tool and with a slight bit of torque on the cylinder. Here, tough, thin, stiff wires passing through tiny holes in a blade shaped to fit the keyway are used to push all the pins up at once, eliminating the need to keep tension on the cylinder to hold pins in place.

Sounds simple, but in practice, this looks like it was a nightmare. Getting five wires to fit into the keyway and guiding them to each pin wasn’t easy, nor was powering the linear actuators that slide the wires in and out. Applying torque to the lock was a chore too; even though tension isn’t needed to retain picked pins, the cylinder still needs to rotate, which means moving the whole picking assembly. But the biggest problem by far seems to be the fragility of the blade that goes into the keyway. SLA might not be the best choice here; perhaps the blade could be made from two thin pieces of aluminum with channels milled on their faces and then assembled face-to-face.

The robot works, albeit very slowly. This isn’t [Sparks and Code]’s first foray into robot lock picking. His previous version attempted to mimic how a human would pick a lock, so this is really thinking outside the box.

Here’s How That Disney 360° Treadmill Works

4 Mayo 2024 at 05:00

One thing going slightly viral lately is footage of Disney’s “HoloTile” infinite floor, an experimental sort of 360° treadmill developed by [Lanny Smoot]. But how exactly does it work? Details about that are less common, but [Marques Brownlee] got first-hand experience with HoloTile and has a video all about the details.

HoloTile is a walking surface that looks like it’s made up of blueish bumps or knobs of some kind. When one walks upon the surface, it constantly works to move its occupant back to the center.

Whenever one moves, the surface works to move the user back to the center.

Each of these bumps is in fact a disk that has the ability spin one way or another, and pivot in different directions. Each disk therefore becomes a sort of tilted wheel whose edge is in contact with whatever is on its surface. By exerting fine control over each of these actuators, the control system is able to create a conveyor-belt like effect in any arbitrary direction. This can be leveraged in several different ways, including acting as a sort of infinite virtual floor.

[Marques] found the system highly responsive and capable of faster movement that many would find comfortable. When walking on it, there is a feeling of one’s body moving in an unexpected direction, but that was something he found himself getting used to. He also found that it wasn’t exactly quiet, but we suppose one can’t have everything.

How this device works has a rugged sort of elegant brute force vibe to it that we find appealing. It is also quite different in principle from other motorized approaches to simulate the feeling of walking while keeping the user in one place.

The whole video is embedded just below the page break, but if you’d like to jump directly to [Marques] explaining and showing exactly how the device works, you can skip to the 2:22 mark.

❌
❌