Vista Normal

Hay nuevos artículos disponibles. Pincha para refrescar la página.
AnteayerSalida Principal

Integrated BMS Makes Battery Packs Easy

26 Marzo 2025 at 23:00

Lithium technology has ushered in a new era of batteries with exceptionally high energy density for a reasonably low cost. This has made a lot possible that would have been unheard of even 20 years ago such as electric cars, or laptops that can run all day on a single charge. But like anything there are tradeoffs to using these batteries. They are much more complex to use than something like a lead acid battery, generally requiring a battery management system (BMS) to keep the cells in tip-top shape. Generally these are standalone systems but [CallMeC] integrated this one into the buswork for a battery pack instead.

The BMS is generally intended to make sure that slight chemical imbalances in the battery cells don’t cause the pack to wear out prematurely. They do this by maintaining an electrical connection to each cell in the battery so they can charge them individually when needed, making sure that they are all balanced with each other. This BMS has all of these connections printed onto a PCB, but also included with the PCB is the high-power bus that would normally be taken care of by bus bar or nickel strips. This reduces the complexity of assembling the battery and ensures that any time it’s hooked up to a number of cells, the BMS is instantly ready to go.

Although this specific build is meant for fairly large lithium iron phosphate batteries, this type of design could go a long way towards making quick battery packs out of cells of any type of battery chemistry that typically need a BMS system, from larger 18650 packs or perhaps even larger cells like those out of a Nissan Leaf.

Have Li-ion Batteries Gone Too Far?

13 Marzo 2025 at 20:00

The proliferation of affordable lithium batteries has made modern life convenient in a way we could only imagine in the 80s when everything was powered by squadrons of AAs, or has it? [Ian Bogost] ponders whether sticking a lithium in every new device is really the best idea.

There’s no doubt, that for some applications, lithium-based chemistries are a critically-enabling technology. NiMH-based EVs of the 1990s suffered short range and slow recharge times which made them only useful as commuter cars, but is a flashlight really better with lithium than with a replaceable cell? When household electronics are treated as disposable, and Right to Repair is only a glimmer in the eye of some legislators, a worn-out cell in a rarely-used device might destine it to the trash bin, especially for the less technically inclined.

[Bogost] decries “the misconception that rechargeables are always better,” although we wonder why his article completely fails to mention the existence of rechargeable NiMH AAs and AAAs which are loads better than their forebears in the 90s. Perhaps even more relevantly, standardized pouch and cylindrical lithium cells are available like the venerable 18650 which we know many makers prefer due to their easy-to-obtain nature. Regardless, we can certainly agree with the author that easy to source and replace batteries are few and far between in many consumer electronics these days. Perhaps new EU regulations will help?

Once you’ve selected a battery for your project, don’t forget to manage it if it’s a Li-ion cell. With great power density, comes great responsibility.

❌
❌