Vista Normal

Hay nuevos artículos disponibles. Pincha para refrescar la página.
AnteayerSalida Principal

Tiny Tapeout 4: A PWM clone of Covox Speech Thing

21 Junio 2024 at 20:00

Tiny Tapout is an interesting project, leveraging the power of cloud computing and collaborative purchasing to make the mysterious art of IC design more accessible for hardware hackers. [Yeo Kheng Meng] is one such hacker, and they have produced their very first custom IC for use with their retrocomputing efforts. As they lament, they left it a little late for the shuttle run submission deadline, so they came up with a very simple project with the equivalent behaviour of the Covox Speech Thing, which is just a basic R-2R ladder DAC hanging from a PC parallel port.

The computed gate-level routing of the ASIC layout

The plan was to capture an 8-bit input bus and compare it against a free-running counter. If the input value is larger than the counter, the output goes high; otherwise, it goes low. This produces a PWM waveform representing the input value. Following the digital output with an RC low-pass filter will generate an analogue representation. It’s all very simple stuff. A few details to contend with are specific to Tiny Tapout, such as taking note of the enable and global resets. These are passed down from the chip-level wrapper to indicate when your design has control of the physical IOs and is selected for operation. [Yeo] noticed that the GitHub post-synthesis simulation failed due to not taking note of the reset condition and initialising those pesky flip-flops.

After throwing the design down onto a Mimas A7 Artix 7 FPGA board for a quick test, data sent from a parallel port-connected PC popped out as a PWM waveform as expected, and some test audio could be played. Whilst it may be true that you don’t have to prototype on an FPGA, and some would argue that it’s a lot of extra effort for many cases, without a good quality graphical simulation and robust testbench, you’re practically working blind. And that’s not how working chips get made.

If you want to read into Tiny Tapeout some more, then we’ve a quick guide for that. Or, perhaps hear it direct from the team instead?

The 6809 Lives On in an FPGA

29 Mayo 2024 at 05:00

At one point, the Motorola 6809 seemed like a great CPU. At the time it was a modern 8-bit CPU and was capable of hosting position-independent code and re-entrant code. Sure, it was pricey back in 1981 (about four times the price of a Z80), but it did boast many features. However, the price probably prevented it from being in more computers. There were a handful, including the Radio Shack Color Computer, but for the most part, the cheaper Z80 and the even cheaper 6502 ruled the roost. Thanks to the [turbo9team], however, you can now host one of these CPUs — maybe even a better version — in an FPGA using Verilog.

The CPU may be old-fashioned on the outside, but inside, it is a pipeline architecture with a standard Wishbone bus to incorporate other cores to add peripherals. The GitHub page explains that while the 6809 is technically CISC, it’s so simple that it’s possible to translate to a RISC-like architecture internally. There are also a few enhanced instructions not present on the 6809.

In addition to the source code, you’ll find a thesis and some presentations about the CPU in the repository. While the 6809 might not be the most modern choice, it has the advantage of having plenty of development tools available and is easy enough to learn. Code for the 6800 should run on it, too.

Even using through-hole parts, you can make a 6809 computer fit in a tiny space.You can also break out a breadboard.

❌
❌