Vista Normal

Hay nuevos artículos disponibles. Pincha para refrescar la página.
AnteayerSalida Principal

Building Diode and Diode-Transistor Logic Gates

Por: Maya Posch
20 Junio 2025 at 20:00
AND gate implemented as diode-resistor logic. (Credit: Anthony Francis-Jones)
AND gate implemented as diode-resistor logic. (Credit: Anthony Francis-Jones)

The fun part about logic gates is that there are so many ways to make them, with each approach having its own advantages and disadvantages. Although these days transistor-transistor logic (TTL) is the most common, diode-transistor logic (DTL) once was a regular sight, as well as diode-resistor logic (DRL). These logic gates are the topic of a recent video by [Anthony Francis-Jones], covering a range of logic gates implemented using mostly diodes and resistors.

Of note is that there’s another class of logic gates: this uses resistors and transistors (RTL) and preceded DTL. While DRL can be used to implement AND and OR logic gates, some types of logic gates (e.g. NOT) require an active (transistor) element, which is where DTL comes into play.

In addition to the construction of a rather nifty demonstration system and explanation of individual logic gates, [Anthony] also shows off a range of DTL cards used in the Bendix G-15 and various DEC systems. Over time TTL would come to dominate as this didn’t have the diode voltage drop and other issues that prevented significant scaling. Although the rise of VLSI has rendered DRL and DTL firmly obsolete, they still make for a fascinating teaching moment and remind us of the effort over the decades to make the computing device on which you’re reading this possible.

Leakage Control for Coupled Coils

5 Junio 2025 at 18:30
Illustrated scheme of Sam Ben Yaakovs concept

Think of a circuit model that lets you move magnetic leakage around like sliders on a synth, without changing the external behavior of your coupled inductors. [Sam Ben-Yaakov] walks you through just that in his video ‘Versatile Coupled Inductor Circuit Model and Examples of Its Use’.

The core idea is as follows. Coupled inductors can be modeled in dozens of ways, but this one adds a twist: a tunable parameter 𝑥 between k and 1 (where k is the coupling coefficient). This fourth degree of freedom doesn’t change L, L or mutual inductance M (they remain invariant) but it lets you shuffle leakage where you want it, giving practical flexibility in designing or simulating transformers, converters, or filters with asymmetric behavior.

If you need leakage on one side only, set 𝑥=k. Prefer symmetrical split? Set 𝑥=1. It’s like parametric EQ, but magnetic. And: the maths holds up. As [Sam Ben-Yaakov] derives and confirms that for any 𝑥 in the range, external characteristics remain identical.

It’s especially useful when testing edge cases, or explaining inductive quirks that don’t behave quite like ideal transformers should. A good model to stash in your toolbox.

As we’ve seen previously, [Sam Ben-Yaakov] is at home when it comes to concepts that need tinkering, trial and error, and a dash of visuals to convey.

Making solder wick less painful

4 Junio 2025 at 20:00
A circuit board is shown, with the tip of a soldering iron applied to a piece of solder wick positioned above a pad.

For some people (e.g. this author) solder wick is a tool of last resort. Unfortunately, solder suckers and vacuum pumps lose most of their utility when you move from through-hole to SMD components, forcing us to use the dreaded wick. For those of us in this mindset, [nanofix]’s recent video which we’ve placed below the break on tips for solder wick could make desoldering a much less annoying experience.

Most of the tips have to do with maintaining proper control of heat flow and distribution. [nanofix]’s first recommendation is to cut off short segments of wick, rather than using it straight from the roll, which reduces the amount of heat lost to conduction along the rest of the length. It’s also important to maintain a certain amount of solder on the soldering iron’s tip to improve conduction between the tip and the wick, and to periodically re-tin the tip to replace absorbed solder. Counterintuitively, [nanofix] explains that a low temperature on the soldering iron is more likely to damage the board than a high temperature, since solder wick getting stuck to a pad risks tearing the traces.

[nanofix] also notes that most boards come from the factory with lead-free solder, which has a higher melting point than tin-lead solder, and thus makes it harder to wick. He recommends first adding eutectic lead-based solder to the pads, then wicking away the new, lower melting-point mixture. Other miscellaneous tips include cutting a more precise tip into pieces of wick, always using flux, avoiding small soldering iron tips, and preheating the board with hot air.

We’ve seen a couple of guides to desoldering before. If you’re looking for more exotic methods for easing the task, you can always use bismuth.

Add Wood Grain Texture to 3D Prints – With a Model of a Log

3 Junio 2025 at 11:00

Adding textures is a great way to experiment with giving 3D prints a different look, and [PandaN] shows off a method of adding a wood grain effect in a way that’s easy to play around with. It involves using a 3D model of a log (complete with concentric tree rings) as a print modifier. The good news is that [PandaN] has already done the work of creating one, as well as showing how to use it.

The model of the stump — complete with concentric tree rings — acts as a modifier for the much-smaller printed object (in this case, a small plate).

In the slicer software one simply uses the log as a modifier for an object to be printed. When a 3D model is used as a modifier in this way, it means different print settings get applied everywhere the object to be printed and the modifier intersect one another.

In the case of this project, the modifier shifts the angle of the fill pattern wherever the models intersect. A fuzzy skin modifier is used as well, and the result is enough to give a wood grain appearance to the printed object. When printed with a wood filament (which is PLA mixed with wood particles), the result looks especially good.

We’ve seen a few different ways to add textures to 3D prints, including using Blender to modify model surfaces. Textures can enhance the look of a model, and are also a good way to hide layer lines.

In addition to the 3D models, [PandaN] provides a ready-to-go project for Bambu slicer with all the necessary settings already configured, so experimenting can be as simple as swapping the object to be printed with a new 3D model. Want to see that in action? Here’s a separate video demonstrating exactly that step-by-step, embedded below.

Hot Rod Backyard Bath on Steel Spring Legs

31 Mayo 2025 at 20:00
Rusty bathtub outdoors on equally rusty car springs

In a fusion of scrapyard elegance and Aussie ingenuity, [Mark Makies] has given a piece of old steel a steamy second life with his ‘CastAway Tub’. Call it a bush mechanic’s fever dream turned functional sculpture, starring two vintage LandCruiser leaf springs, and a rust-hugged cast iron tub dug up after 20 years in hiding. And put your welding goggles on, because this one is equal parts brute force and artisan flair.

What makes this hack so bold is, first of all, the reuse of unforgiving spring steel. Leaf springs, notoriously temperamental to weld, are tamed here with oxy-LPG preheating, avoiding thermal shock like a pro. The tub sits proudly atop a custom-welded frame shaped from dismantled spring packs, with each leaf ground, clamped, torched, and welded into a steampunk sled base. The whole thing looks like it might outrun a dune buggy – and possibly bathe you while it’s at it. It’s a masterclass in metalwork with zero CAD, all intuition, and a grinder that’s seen things.

Inspired? For those with a secret love for hot water and hot steel, this build is a blueprint for turning bush junk into backyard art. Read up on the full build at Instructables.

Easy Panels With InkJet, Adhesives, and Elbow Grease

19 Mayo 2025 at 20:00

Nothing caps off a great project like a good, professional-looking front panel. Looking good isn’t easy, but luckily [Accidental Science] has a tutorial for a quick-and-easy front panel technique in the video below.

It starts with regular paper, and an inkjet or laser printer to print your design. The paper then gets coated on both sides: matte varnish on the front, and white spray paint on the back. Then it’s just a matter of cutting the decal from the paper, and it gluing to your panel. ([Accidental Science] suggests two-part epoxy, but cautions you make sure it does not react to the paint.)

He uses aluminum in this example, but there’s no reason you could not choose a different substrate. Once the paper is adhered to the panel, another coat of varnish is applied to protect it. Alternatively, clear epoxy can be used as glue and varnish. The finish produced is very professional, and holds up to drilling and filing the holes in the panel.

We’d probably want to protect the edges by mounting this panel in a frame, but otherwise would be proud to put such a panel on a project that required it. We covered a similar technique before, but it required a laminator.If you’re looking for alternatives, Hackaday community had a lot of ideas on how to make a panel, but if you have a method you’ve documented, feel free to put in the tip line.

Deep Dive on Panel Making

27 Abril 2025 at 08:00

It is easier than ever to produce projects with nice enclosures thanks to 3D printing and laser cutting. However, for a polished look, you also need a labeled front panel. We’ve looked at several methods for doing that in the past, but we enjoyed [Accidental Science’s] video showing his method for making laminated panels.

His first step is to draw the panel in Inkscape, and he has some interesting tips for getting the most out of the program. He makes a few prints and laminates one of them. The other is a drill guide. You use the drill guide to make openings in the panel, which could be aluminum, steel, plastic, or whatever material you want to work in.

The laminated print goes on last with just enough glue to hold it. Is it a lot of work? You bet it is. But the results look great. There are a number of things to look out for, so if you plan to do this, the video will probably save you from making some mistakes.

There are many ways to get this job done. We’ve asked you for ideas before and, as usual, you came through. If you want a different take on laminated panels, there are a few different tips you can glean from this project.

❌
❌