Vista Normal

Hay nuevos artículos disponibles. Pincha para refrescar la página.
Ayer — 25 Abril 2025Salida Principal

Posthumous Composition Being Performed by the Composer

25 Abril 2025 at 11:00
Revivification: a Room with cymbals and plinth

Alvin Lucier was an American experimental composer whose compositions were arguably as much science experiments as they were music. The piece he is best known for, I Am Sitting in a Room, explored the acoustics of a room and what happens when you amplify the characteristics that are imparted on sound in that space by repeatedly recording and playing back the sound from one tape machine to another. Other works have employed galvanic skin response sensors, electromagnetically activated piano strings and other components that are not conventionally used in music composition.

Undoubtedly the most unconventional thing he’s done (so far) is to perform in an exhibit at The Art Gallery of Western Australia in Perth which opened earlier this month. That in itself would not be so unconventional if it weren’t for the fact that he passed away in 2021. Let us explain.

While he was still alive, Lucier entered into a collaboration with a team of artists and biologists to create an exhibit that would push art, science and our notions of what it means to live beyond one’s death into new ground.

The resulting exhibit, titled Revivication, is a room filled with gong-like cymbals being played via actuators by Lucier’s brain…sort of. It is a brain organoid, a bundle of neurons derived from a sample of his blood which had been induced into pluripotent stem cells. The organoid sits on a mesh of electrodes, providing an interface for triggering the cymbals.

Brain Organoid on a mesh of electrodes.
A brain organoid derived from Alvin Lucier’s blood cells sits on a mesh of electrodes.

“But the organoid isn’t aware of what’s happening, it’s not performing” we hear you say. While it is true that the bundle of neurons isn’t likely to have intuited hundreds of years of music theory or its subversion by experimental methodology, it is part of a feedback loop that potentially allows it to “perceive” in some way the result of its “actions”.

Microphones mounted at each cymbal feed electrical stimulus back to the organoid, presumably providing it with something to respond to. Whether it does so in any meaningful way is hard to say.

The exhibit asks us to think about where creativity comes from. Is it innate? Is it “in our blood” so to speak? Do we have agency or are we being conducted? Can we live on beyond our own deaths through some creative act? What, if anything, do brain organoids experience?

This makes us think about some of the interesting mind-controlled musical interfaces we’ve seen, the promise of pluripotent stem cell research, and of course those brain computer interfaces. Oh, and there was that time the Hackaday Podcast featured Alvin Lucier’s I Am Sitting in a Room on What’s that Sound.

AnteayerSalida Principal

Unsolved Questions in Astronomy? Try Dark Matter!

23 Abril 2025 at 11:00
A false colour image of the region of sky containing the CMZ.

Sometimes in fantasy fiction, you don’t want to explain something that seems inexplicable, so you throw your hands up and say, “A wizard did it.” Sometimes in astronomy, instead of a wizard, the answer is dark matter (DM). If you are interested in astronomy, you’ve probably heard that dark matter solves the problem of the “missing mass” to explain galactic light curves, and the motion of galaxies in clusters.

Now [Pedro De la Torre Luque] and others are proposing that DM can solve another pair of long-standing galactic mysteries: ionization of the central molecular zone (CMZ) in our galaxy, and mysterious 511 keV gamma-rays.

The Central Molecular Zone is a region near the heart of the Milky Way that has a very high density of interstellar gases– around sixty million times the mass of our sun, in a volume 1600 to 1900 light years across. It happens to be more ionized than it ought to be, and ionized in a very even manner across its volume. As astronomers cannot identify (or at least agree on) the mechanism to explain this ionization, the CMZ ionization is mystery number one.

Feynman diagram: Space-time vectors for electron-positron annihilation
Feynman diagram of electron-positron annihilation, showing the characteristic gamma-ray emission.

Mystery number two is a diffuse glow of gamma rays seen in the same part of the sky as the CMZ, which we know as the constellation Sagittarius. The emissions correspond to an energy of 515 keV, which is a very interesting number– it’s what you get when an electron annihilates with the antimatter version of itself. Again, there’s no universally accepted explanation for these emissions.

So [Pedro De la Torre Luque] and team asked themselves: “What if a wizard did it?” And set about trying to solve the mystery using dark matter. As it turns out, computer models including a form of light dark matter (called sub-GeV DM in the paper, for the particle’s rest masses) can explain both phenomena within the bounds of error.

In the model, the DM particles annihilate to form electron-positron pairs. In the dense interstellar gas of the CMZ, those positrons quickly form electrons to produce the 511 keV gamma rays observed. The energy released from this annihilation results in enough energy to produce the observed ionization, and even replicate the very flat ionization profile seen across the CMZ. (Any other proposed ionization source tends to radiate out from its source, producing an uneven profile.) Even better, this sort of light dark matter is consistent with cosmological observations and has not been ruled out by Earth-side dark matter detectors, unlike some heavier particles.

Further observations will help confirm or deny these findings, but it seems dark matter is truly the gift that keeps on giving for astrophysicists. We eagerly await what other unsolved questions in astronomy can be answered by it next, but it leaves us wondering how lazy the universe’s game master is if the answer to all our questions is: “A wizard did it.”

We can’t talk about dark matter without remembering [Vera Rubin].

Virtual Nodes, Real Waves: a Colpitts Walkthrough

23 Abril 2025 at 05:00

If you’ve ever fumbled through circuit simulation and ended up with a flatline instead of a sine wave, this video from [saisri] might just be the fix. In this walkthrough she demonstrates simulating a Colpitts oscillator using NI Multisim 14.3 – a deceptively simple analog circuit known for generating stable sine waves. Her video not only shows how to place and wire components, but it demonstrates why precision matters, even in virtual space.

You’ll notice the emphasis on wiring accuracy at multi-node junctions, something many tutorials skim over. [saisri] points out that a single misconnected node in Multisim can cause the circuit to output zilch. She guides viewers step-by-step, starting with component selection via the “Place > Components” dialog, through to running the simulation and interpreting the sine wave output on Channel A. The manual included at the end of the video is a neat bonus, bundling theory, waveform visuals, and circuit diagrams into one handy PDF.

If you’re into precision hacking, retro analogue joy, or just love watching a sine wave bloom onscreen, this is worth your time. You can watch the original video here.

How Supercritical CO2 Working Fluid Can Increase Power Plant Efficiency

Por: Maya Posch
23 Abril 2025 at 02:00
Multi-stage steam turbine with turbo generator (rear, in red) at the German lignite plant Boxberg (Credit: Siemens AG)

Using steam to produce electricity or perform work via steam turbines has been a thing for a very long time. Today it is still exceedingly common to use steam in this manner, with said steam generated either by burning something (e.g. coal, wood), by using spicy rocks (nuclear fission) or from stored thermal energy (e.g. molten salt). That said, today we don’t use steam in the same way any more as in the 19th century, with e.g. supercritical and pressurized loops allowing for far higher efficiencies. As covered in a recent video by [Ryan Inis], a more recent alternative to using water is supercritical carbon dioxide (CO2), which could boost the thermal efficiency even further.

In the video [Ryan Inis] goes over the basics of what the supercritical fluid state of CO2 is, which occurs once the critical point is reached at 31°C and 83.8 bar (8.38 MPa). When used as a working fluid in a thermal power plant, this offers a number of potential advantages, such as the higher density requiring smaller turbine blades, and the potential for higher heat extraction. This is also seen with e.g. the shift from boiling to pressurized water loops in BWR & PWR nuclear plants, and in gas- and salt-cooled reactors that can reach far higher efficiencies, as in e.g. the HTR-PM and MSRs.

In a 2019 article in Power the author goes over some of the details, including the different power cycles using this supercritical fluid, such as various Brayton cycles (some with extra energy recovery) and the Allam cycle. Of course, there is no such thing as a free lunch, with corrosion issues still being worked out, and despite the claims made in the video, erosion is also an issue with supercritical CO2 as working fluid. That said, it’s in many ways less of an engineering issue than supercritical steam generators due to the far more extreme critical point parameters of water.

If these issues can be overcome, it could provide some interesting efficiency boosts for thermal plants, with the caveat that likely nobody is going to retrofit existing plants, supercritical steam (coal) plants already exist and new nuclear plant designs are increasingly moving towards gas, salt and even liquid metal coolants, though secondary coolant loops (following the typical steam generator) could conceivably use CO2 instead of water where appropriate.

What’s Sixty Feet Across and Superconducting?

22 Abril 2025 at 11:00
The central solenoid taking shape in the ITER assembly hall.

What’s sixty feet (18.29 meters for the rest of the world) across and superconducting? The International Thermonuclear Experimental Reactor (ITER), and probably not much else.

The last parts of the central solenoid assembly have finally made their way to France from the United States, making both a milestone in the slow development of the world’s largest tokamak, and a reminder that despite the current international turmoil, we really can work together, even if we can’t agree on the units to do it in.

A cutaway diagram of the ITER tokamak showing the central solenoid
The central solenoid is in the “doughnut hole” of the tokamak in this cutaway diagram. Image: US ITER.

The central solenoid is 4.13 m across (that’s 13′ 7″ for burger enthusiasts) sits at the hole of the “doughnut” of the toroidal reactor. It is made up of six modules, each weighing 110 t (the weight of 44 Ford F-150 pickup trucks), stacked to a total height of 59 ft (that’s 18 m, if you prefer). Four of the six modules have be installed on-site, and the other two will be in place by the end of this year.

Each module was produced ITER US, using superconducting material produced by ITER Japan, before being shipped for installation at the main ITER site in France — all to build a reactor based on a design from the Soviet Union. It doesn’t get much more international than this!

This magnet is, well, central to a the functioning of a tokamak. Indeed, the presence of a central solenoid is one of the defining features of this type, compared to other toroidal rectors (like the earlier stellarator or spheromak). The central solenoid provides a strong magnetic field (in ITER, 13.1 T) that is key to confining and stabilizing the plasma in a tokamak, and inducing the 15 MA current that keeps the plasma going.

When it is eventually finished (now scheduled for initial operations in 2035) ITER aims to produce 500 MW of thermal power from 50 MW of input heating power via a deuterium-tritium fusion reaction. You can follow all news about the project here.

While a tokamak isn’t likely something you can hack together in your back yard, there’s always the Farnsworth Fusor, which you can even built to fit on your desk.

PoX: Super-Fast Graphene-Based Flash Memory

Por: Maya Posch
22 Abril 2025 at 02:00

Recently a team at Fudan University claimed to have developed a picosecond-level Flash memory device (called ‘PoX’) that has an access time of a mere 400 picoseconds. This is significantly faster than the millisecond level access times of NAND Flash memory, and more in the ballpark of DRAM, while still being non-volatile. Details on the device technology were published in Nature.

In the paper by [Yutong Xing] et al. they describe the memory device as using a two-dimensional Dirac graphene-channel Flash memory structure, with hot carrier injection for both electron and hole injection, meaning that it is capable of both writing and erasing. Dirac graphene refers to the unusual electron transport properties of typical monolayer graphene sheets.

Demonstrated was a write speed of 400 picoseconds, non-volatile storage and a 5.5 × 106 cycle endurance with a programming voltage of 5 V. It are the unique properties of a Dirac material like graphene that allow these writes to occur significantly faster than in a typical silicon transistor device.

What is still unknown is how well this technology scales, its power usage, durability and manufacturability.

Preventing Galvanic Corrosion in Water Cooling Loops

Por: Maya Posch
21 Abril 2025 at 05:00

Water is an excellent coolant, but the flip side is that it is also an excellent solvent. This, in short, is why any water cooling loop is also a prime candidate for an interesting introduction to the galvanic metal series, resulting in severe corrosion that commences immediately. In a recent video by [der8aer], this issue is demonstrated using a GPU cold plate. The part is made out of nickel-plated copper and features many small channels to increase surface area with the coolant.

The surface analysis of the sample cold plate after a brief exposure to distilled water, showing the deposited copper atoms. (Credit: der8auer, YouTube)
The surface analysis of the sample cold plate after a brief exposure to distilled water shows the deposited copper atoms. (Credit: der8auer, YouTube)

Theoretically, if one were to use distilled water in a coolant loop that contains a single type of metal (like copper), there would be no issue. As [der8auer] points out, fittings, radiators, and the cooling block are nearly always made of various metals and alloys like brass, for example. This thus creates the setup for galvanic corrosion, whereby one metal acts as the anode and the other as a cathode. While this is desirable in batteries, for a cooling loop, this means that the water strips metal ions off the anode and deposits them on the cathode metal.

The nickel-plated cold plate should be immune to this if the plating were perfect. However, as demonstrated in the video, even a brief exposure to distilled water at 60°C induced strong galvanic corrosion. Analysis in an SEM showed that the imperfect nickel plating allowed copper ions to be dissolved into the water before being deposited on top of the nickel (cathode). In a comparison with another sample that had a coolant with corrosion inhibitor (DP Ultra) used, no such corrosion was observed, even after much longer exposure.

This DP Ultra coolant is mostly distilled water but has glycol added. The glycol improves the pH and coats surfaces to prevent galvanic corrosion. The other element is benzotriazole, which provides similar benefits. Of course, each corrosion inhibitor targets a specific environment, and there is also the issue with organic films forming, which may require biocides to be added. As usual, water cooling has more subtlety than you’d expect.

China’s TMSR-LF1 Molten Salt Thorium Reactor Begins Live Refueling Operations

Por: Maya Posch
19 Abril 2025 at 23:00
The TMSR-LF1 building seen from the sky. (Credit: SINAP)

Although uranium-235 is the typical fuel for commercial fission reactors on account of it being fissile, it’s relatively rare relative to the fertile U-238 and thorium (Th-232). Using either of these fertile isotopes to breed new fuel from is thus an attractive proposition. Despite this, only India and China have a strong focus on using Th-232 for reactors, the former using breeders (Th-232 to U-233) to create fertile uranium fuel. China has demonstrated its approach — including refueling a live reactor — using a fourth-generation molten salt reactor.

The original research comes from US scientists in the 1960s. While there were tests in the MSRE reactor, no follow-up studies were funded. The concept languished until recently, with Terrestrial Energy’s Integral MSR and construction on China’s 2 MW TMSR-LF1 experimental reactor commencing in 2018 before first criticality in 2023. One major advantage of an MSR with liquid fuel (the -LF part in the name) is that it can filter out contaminants and add fresh fuel while the reactor is running. With this successful demonstration, along with the breeding of uranium fuel from thorium last year, a larger, 10 MW design can now be tested.

Since TMSR doesn’t need cooling water, it is perfect for use in arid areas. In addition, China is working on using a TMSR-derived design in nuclear-powered container vessels. With enough thorium around for tens of thousands of years, these low-maintenance MSR designs could soon power much of modern society, along with high-temperature pebble bed reactors, which is another concept that China has recently managed to make work with the HTR-PM design.

Meanwhile, reactors are getting smaller in general.

D20-shaped Quasicrystal Makes High-Strength Alloy Printable

18 Abril 2025 at 11:00
An electron microscope image of the aluminum alloy from the study.

When is a crystal not a crystal? When it’s a quasi-crystal, a paradoxical form of metal recently found in some 3D printed metal alloys by [A.D. Iams et al] at the American National Institute for Standards and Technology (NIST).

As you might remember from chemistry class, crystals are made up of blocks of atoms (usually called ‘unit cells’) that fit together in perfect repetition — baring dislocations, cracks, impurities, or anything else that might throw off a theoretically perfect crystal structure. There are only so many ways to tessellate atoms in 3D space; 230 of them, to be precise. A quasicrystal isn’t any of them. Rather than repeat endlessly in 3D space, a quasicrystal never repeats perfectly, like a 3D dimensional Penrose tile. The discovery of quasicrystals dates back to the 1980s, and was awarded a noble prize in 2011.

Penrose tiling of thick and thin rhombi
Penrose tiling– the pattern never repeats perfectly. Quasicrystals do this in 3D. (Image by Inductiveload, Public Domain)

Quasicrystals aren’t exactly common in nature, so how does 3D printing come into this? Well, it turns out that, quite accidentally, a particular Aluminum-Zirconium alloy was forming small zones of quasicrystals (the black spots in the image above) when used in powder bed fusion printing. Other high strength-alloys tended to be very prone to cracking, to the point of unusability, and this Al-Zr alloy, discovered in 2017, was the first of its class.

You might imagine that the non-regular structure of a quasicrystal wouldn’t propagate cracks as easily as a regular crystal structure, and you would be right! The NIST researchers obviously wanted to investigate why the printable alloy had the properties it does. When their crystallographic analysis showed not only five-fold, but also three-fold and two-fold rotational symmetry when examined from different angles, the researchers realized they had a quasicrystal on their hands. The unit cell is in the form of a 20-sided icosahedron, providing the penrose-style tiling that keeps the alloy from cracking.

You might say the original team that developed the alloy rolled a nat-20 on their crafting skill. Now that we understand why it works, this research opens up the doors for other metallic quasi-crystals to be developed on purpose, in aluminum and perhaps other alloys.

We’ve written about 3D metal printers before, and highlighted a DIY-able plastic SLS kit, but the high-power powder-bed systems needed for aluminum aren’t often found in makerspaces. If you’re building one or know someone who is, be sure to let us know.

Budget Schlieren Imaging Setup Uses 3D Printing to Reveal the Unseen

17 Abril 2025 at 11:00

We’re suckers here for projects that let you see the unseeable, and [Ayden Wardell Aerospace] provides that on a budget with their $30 Schlieren Imaging Setup. The unseeable in question is differences in air density– or, more precisely, differences in the refractive index of the fluid the imaging set up makes use of, in this case air. Think of how you can see waves of “heat” on a warm day– that’s lower-density hot air refracting light as it rises. Schlieren photography weaponizes this, allowing to analyze fluid flows– for example, the mach cones in a DIY rocket nozzle, which is what got [Ayden Wardell Aerospace] interested in the technique.

Shock diamonds from a homemade rocket nozzle imaged by this setup.
Examining exhaust makes this a useful tool for [Aerospace].
This is a ‘classic’ mirror-and-lamp Schlieren set up.  You put the system you wish to film near the focal plane of a spherical mirror, and camera and light source out at twice the focal distance. Rays deflected by changes in refractive index miss the camera– usually one places a razor blade precisely to block them, but [Ayden] found that when using a smart phone that was unnecessary, which shocked this author.

While it is possible that [Ayden Wardell Aerospace] has technically constructed a shadowgraph, they claim that carefully positioning the smartphone allows the sharp edge of the case to replace the razor blade. A shadowgraph, which shows the second derivative of density, is a perfectly valid technique for flow visualization, and is superior to Schlieren photography in some circumstances– when looking at shock waves, for example.

Regardless, the great thing about this project is that [Ayden Wardell Aerospace] provides us with STLs for the mirror and smartphone mounting, as well as providing a BOM and a clear instructional video. Rather than arguing in the comments if this is “truly” Schlieren imaging, grab a mirror, extrude some filament, and test it for yourself!

There are many ways to do Schlieren images. We’ve highighted background-oriented techniques, and seen how to do it with a moiré pattern, or even a selfie stick. Still, this is the first time 3D printing has gotten involved and the build video below is quick and worth watching for those sweet, sweet Schlieren images.

Shine On You Crazy Diamond Quantum Magnetic Sensor

15 Abril 2025 at 11:00

We’re probably all familiar with the Hall Effect, at least to the extent that it can be used to make solid-state sensors for magnetic fields. It’s a cool bit of applied physics, but there are other ways to sense magnetic fields, including leveraging the weird world of quantum physics with this diamond, laser, and microwave open-source sensor.

Having never heard of quantum sensors before, we took the plunge and read up on the topic using some of the material provided by [Mark C] and his colleagues at Quantum Village. The gist of it seems to be that certain lab-grown diamonds can be manufactured with impurities such as nitrogen, which disrupt the normally very orderly lattice of carbon atoms and create a “nitrogen vacancy,” small pockets within the diamond with extra electrons. Shining a green laser on N-V diamonds can stimulate those electrons to jump up to higher energy states, releasing red light when they return to the ground state. Turning this into a sensor involves sweeping the N-V diamond with microwave energy in the presence of a magnetic field, which modifies which spin states of the electrons and hence how much red light is emitted.

Building a practical version of this quantum sensor isn’t as difficult as it sounds. The trickiest part seems to be building the diamond assembly, which has the N-V diamond — about the size of a grain of sand and actually not that expensive — potted in clear epoxy along with a loop of copper wire for the microwave antenna, a photodiode, and a small fleck of red filter material. The electronics primarily consist of an ADF4531 phase-locked loop RF signal generator and a 40-dB RF amplifier to generate the microwave signals, a green laser diode module, and an ESP32 dev board.

All the design files and firmware have been open-sourced, and everything about the build seems quite approachable. The write-up emphasizes Quantum Village’s desire to make this quantum technology’s “Apple II moment,” which we heartily endorse. We’ve seen N-V sensors detailed before, but this project might make it easier to play with quantum physics at home.

Building A DIY Tornado Tower

Por: Lewin Day
15 Abril 2025 at 05:00

A tornado can be an awe-inspiring sight, but it can also flip your car, trash your house, and otherwise injure you with flying debris. If you’d like to look at swirling air currents in a safer context, you might appreciate this tornado tower build from [Gary Boyd].

[Gary]’s build was inspired by museum demonstrations and the tornado machine designs of [Harald Edens]. His build generates a vortex that spans 1 meter tall in a semi-open cylindrical chamber. A fan in the top of the device sucks in air from the chamber, and exhausts it through a vertical column of holes in the wall of the cylinder. This creates a vortex in the air, though it’s not something you can see on its own. To visualize the flow, the cylindrical chamber is also fitted with an ultrasonic mist generator in the base. The vortex in the chamber is able to pick up this mist, and it can be seen swirling upwards as it is sucked towards the fan at the top.

It’s a nice educational build, and one that’s as nice to look at as it is to study. It produces a thick white vortex that we’re sure someone could turn into an admirable lamp or clock or something, this being Hackaday, after all. In any case, vortexes are well worth your study. If you’re cooking up neat projects with this physical principle, you should absolutely let us know!

Plasmonic Modulators Directly Convert Terahertz Waves to Optical Signals

Por: Maya Posch
15 Abril 2025 at 02:00

A major bottleneck with high-frequency wireless communications is the conversion from radio frequencies to optical signals and vice versa. This is performed by an electro-optic modulator (EOM), which generally are limited to GHz-level signals. To reach THz speeds, a new approach was needed, which researchers at ETH Zurich in Switzerland claim to have found in the form of a plasmonic phase modulator.

Although sounding like something from a Star Trek episode, plasmonics is a very real field, which involves the interaction between optical frequencies along metal-dielectric interfaces. The original 2015 paper by [Yannick Salamin] et al. as published in Nano Letters provides the foundations of the achievement, with the recent paper in Optica by [Yannik Horst] et al. covering the THz plasmonic EOM demonstration.

The demonstrated prototype can achieve 1.14 THz, though signal degradation begins to occur around 1 THz. This is achieved by using plasmons (quanta of electron oscillators) generated on the gold surface, who affect the optical beam as it passes small slots in the gold surface that contain a nonlinear organic electro optic material that ‘writes’ the original wireless signal onto the optical beam.

Creating a Somatosensory Pathway From Human Stem Cells

Por: Maya Posch
12 Abril 2025 at 02:00

Human biology is very much like that of other mammals, and yet so very different in areas where it matters. One of these being human neurology, with aspects like the human brain and the somatosensory pathways (i.e. touch etc.) being not only hard to study in non-human animal analogs, but also (genetically) different enough that a human test subject is required. Over the past years the use of human organoids have come into use, which are (parts of) organs grown from human pluripotent stem cells and thus allow for ethical human experimentation.

For studying aspects like the somatosensory pathways, multiple of such organoids must be combined, with recently [Ji-il Kim] et al. as published in Nature demonstrating the creation of a so-called assembloid. This four-part assembloid contains somatosensory, spinal, thalamic and cortical organoids, covering the entirety of such a pathway from e.g. one’s skin to the brain’s cortex where the sensory information is received.

Such assembloids are – much like organoids – extremely useful for not only studying biological and biochemical processes, but also to research diseases and disorders, including tactile deficits as previously studied in mouse models by e.g. [Lauren L. Orefice] et al. caused by certain genetic mutations in Mecp2 and other genes, as well as genes like SCN9A that can cause clinical absence of pain perception.

Using these assembloids the development of these pathways can be studied in great detail and therapies developed and tested.

A Tale Of Nuclear Shenanigans From Down Under

Por: Jenny List
7 Abril 2025 at 05:00

It’s likely that among the readers of this article there will be many who collect something. Whether it’s rare early LEDs or first-year-of-manufacture microprocessors, you’ll scour the internet to find them, and eagerly await mystery packages from the other side of the world.

There’s a tale emerging from Australia featuring just such a collector, whose collection now has him facing a jail sentence for importing plutonium. The story however is not so clear-cut, featuring a media frenzy and over-reaction from the authorities worthy of Gatwick Airport. [Explosions&Fire] has a rather long video unpacking the events, which we’ve placed below the break.

Emmanuel Lidden is an element collector, someone who tries to assemble an entire Periodic Table in their collection. He ordered a range of elements from an American element collectors’ supply website, including samples of plutonium and thorium. He seems to have been unaware he was committing any crime, with the microscopic samples available from legitimate websites with no warnings attached. The case becomes murkier as the Australian authorities flagged the thorium sample and instructed the courier not to deliver it, which they did anyway. Then a raid of the type you’d expect for the terrorists who stole the plutonium in Back To The Future was launched, along with that Gatwick-esque media frenzy.

We’re inclined to agree that the penalty likely to be meted out to him for buying a sliver of a Soviet smoke detector embedded in a Lucite cube seems overly steep, but at the same time his obvious naivety over dealing in radioactive materials marks him as perhaps more than a little foolhardy. It’s something over which to ponder though, have we managed to amass anything illegal disguised as outdated devices? Have you? Perhaps it’s something to discuss in the comments.

Dwingeloo to Venus: Report of a Successful Bounce

28 Marzo 2025 at 11:00
Dwingeloo telescope with sun shining through

Radio waves travel fast, and they can bounce, too. If you are able to operate a 25-meter dish, a transmitter, a solid software-defined radio, and an atomic clock, the answer is: yes, they can go all the way to Venus and back. On March 22, 2025, the Dwingeloo telescope in the Netherlands successfully pulled off an Earth-Venus-Earth (EVE) bounce, making them the second group of amateurs ever to do so. The full breakdown of this feat is available in their write-up here.

Bouncing signals off planets isn’t new. NASA has been at it since the 1960s – but amateur radio astronomers have far fewer toys to play with. Before Dwingeloo’s success, AMSAT-DL achieved the only known amateur EVE bounce back in 2009. This time, the Dwingeloo team transmitted a 278-second tone at 1299.5 MHz, with the round trip to Venus taking about 280 seconds. Stockert’s radio telescope in Germany also picked up the returning echo, stronger than Dwingeloo’s own, due to its more sensitive receiving setup.

Post-processing wasn’t easy either. Doppler shift corrections had to be applied, and the received signal was split into 1 Hz frequency bins. The resulting detections clocked in at 5.4 sigma for Dwingeloo alone, 8.5 sigma for Stockert’s recording, and 9.2 sigma when combining both datasets. A clear signal, loud and proud, straight from Venus’ surface.

The experiment was cut short when Dwingeloo’s transmitter started failing after four successful bounces. More complex signal modulations will have to wait for the next Venus conjunction in October 2026. Until then, you can read our previously published article on achievements of the Dwingeloo telescope.

General Fusion Claims Success with Magnetized Target Fusion

Por: Maya Posch
27 Marzo 2025 at 14:00

It’s rarely appreciated just how much more complicated nuclear fusion is than nuclear fission. Whereas the latter involves a process that happens all around us without any human involvement, and where the main challenge is to keep the nuclear chain reaction within safe bounds, nuclear fusion means making atoms do something that goes against their very nature, outside of a star’s interior.

Fusing helium isotopes can be done on Earth fairly readily these days, but doing it in a way that’s repeatable — bombs don’t count — and in a way that makes economical sense is trickier. As covered previously, plasma stability is a problem with the popular approach of tokamak-based magnetic confinement fusion (MCF). Although this core problem has now been largely addressed, and stellarators are mostly unbothered by this particular problem, a Canadian start-up figures that they can do even better, in the form of a nuclear fusion reactors based around the principle of magnetized target fusion (MTF).

Although General Fusion’s piston-based fusion reactor has people mostly very confused, MTF is based on real physics and with GF’s current LM26 prototype having recently achieved first plasma, this seems like an excellent time to ask the question of what MTF is, and whether it can truly compete billion-dollar tokamak-based projects.

Squishing Plasma Toroids

Lawson criterion of important magnetic confinement fusion experiments (Credit: Horvath, A., 2016)
Lawson criterion of important magnetic confinement fusion experiments (Credit: Horvath, A., 2016)

In general, to achieve nuclear fusion, the target atoms have to be pushed past the Coulomb barrier, which is an electrostatic interaction that normally prevents atoms from approaching each other and even spontaneously fusing. In stars, the process of nucleosynthesis is enabled by the intense pressures due to the star’s mass, which overcomes this electrostatic force.

Replicating the nuclear fusion process requires a similar way to overcome the Coulomb barrier, but in lieu of even a small-sized star like our Sun, we need alternate means such as much higher temperatures, alternative ways to provide pressure and longer confinement times. The efficiency of each approach was originally captured in the Lawson criterion, which was developed by John D. Lawson in a (then classified) 1955 paper (PDF on Archive.org).

In order to achieve a self-sustaining fusion reaction, the energy losses should be less than the energy produced by the reaction. The break-even point here is expressed as having a Q (energy gain factor) of 1, where the added energy and losses within the fusion process are in balance. For sustained fusion with excess energy generation, the Q value should be higher than 1, typically around 5 for contemporary fuels and fusion technology.

In the slow march towards ignition, we have seen many reports in the popular media that turn out to be rather meaningless, such as the horrendous inefficiency demonstrated by the laser-based inertial confinement fusion (ICF) at the National Ignition Facility (NIF). This makes it rather fascinating that what General Fusion is attempting is closer to ICF, just without the lasers and artisan Hohlraum-based fuel pellets.

Instead they use a plasma injector, a type of plasma railgun called a Marshall gun, that produces hydrogen isotope plasma, which is subsequently contained in a magnetic field as a self-stable compact toroid. This toroid is then squished by a mechanical system in a matter of milliseconds, with the resulting compression induces fusion. Creating this toroid is the feat that was recently demonstrated in the current Lawson Machine 26 (LM26) prototype reactor with its first plasma in the target chamber.

Magneto-Inertial Fusion

Whereas magnetic confinement fusion does effectively what it says on the tin, magnetic target fusion is pretty much a hybrid of magnetic confinement fusion and the laser-based intertial confinement fusion. Because the magnetic containment is only there to essentially keep the plasma in a nice stable toroid, it doesn’t have nearly the same requirements as in a tokamak or stellarator. Yet rather than using complex and power-hungry lasers, MCF applies mechanical energy using an impulse driver — the liner — that rapidly compresses the low-density plasma toroid.

Schematic of the Lawson Machine 26 MTF reactor. (Credit: General Fusion)
Schematic of the Lawson Machine 26 MTF reactor. (Credit: General Fusion)

The juiciest parts of General Fusion’s experimental setup can be found in the Research Library on the GF website. The above graphic was copied from the LM26 poster (PDF), which provides a lot of in-depth information on the components of the device and its operation, as well as the experiments that informed its construction.

The next step will be to test the ring compressor that is designed to collapse the lithium liner around the plasma toroid, compressing it and achieving fusion.

Long Road Ahead

Interpretation of General Fusion's commercial MTF reactor design. (Credit: Evan Mason)
Interpretation of General Fusion’s commercial MTF reactor design. (Credit: Evan Mason)

As promising this may sound, there is still a lot of work to do before MTF can be considered a viable option for commercial fusion. As summarized on the Wikipedia entry for General Fusion, the goal is to have a liquid liner rather than the solid lithium liner of LM26. This liquid lithium liner will both breed new tritium fuel from neutron exposure, as well as provide the liner that compresses the deuterium-tritium fuel.

This liquid liner would also provide cooling, linked with a heat exchanger or steam generator to generate electricity. Because the liquid liner would be infinitely renewable, it should allow for about 1 cycle per second. To keep the liquid liner in place on the inside of the sphere, it would need to be constantly spun, further complicating the design.

Although getting plasma in the reaction chamber where it can be squished by the ring compressor’s lithium liner is a major step, the real challenge will be in moving from a one-cycle-a-day MTF prototype to something that can integrate not only the aforementioned features, but also run one cycle per second, while being more economical to run than tokamaks, stellarators, or even regular nuclear fission plants, especially Gen IV fast neutron reactors.

That said, there is a strong argument to be made that MTF is significantly more practical for commercial power generation than ICF. And regardless, it is just really cool science and engineering.

Top image: General Fusion’s Lawson Machine 26. (Credit: General Fusion)

Twisting Magnetism to Control Electron Flow

23 Marzo 2025 at 02:00
Microscopic view of chiral magnetic material

If you ever wished electrons would just behave, this one’s for you. A team from Tohoku, Osaka, and Manchester Universities has cracked open an interesting phenomenon in the chiral helimagnet α-EuP3: they’ve induced one-way electron flow without bringing diodes into play. Their findings are published in the Proceedings of the National Academy of Sciences.

The twist in this is quite literal. By coaxing europium atoms into a chiral magnetic spiral, the researchers found they could generate rectification: current that prefers one direction over another. Think of it as adding a one-way street in your circuit, but based on magnetic chirality rather than semiconductors. When the material flips to an achiral (ferromagnetic) state, the one-way effect vanishes. No asymmetry, no preferential flow. They’ve essentially toggled the electron highway signs with an external magnetic field. This elegant control over band asymmetry might lead to low-power, high-speed data storage based on magnetic chirality.

If you are curious how all this ties back to quantum theory, you can trace the roots of chiral electron flow back to the early days of quantum electrodynamics – when physicists first started untangling how particles and fields really interact.

There’s a whole world of weird physics waiting for us. In the field of chemistry, chirality has been covered by Hackaday, foreshadowing the lesser favorable ways of use. Read up on the article and share with us what you think.

Biosynthesis of Polyester Amides in Engineered Escherichia Coli

Por: Maya Posch
22 Marzo 2025 at 08:00

Polymers are one of the most important elements of modern-day society, particularly in the form of plastics. Unfortunately most common polymers are derived from fossil resources, which not only makes them a finite resource, but is also problematic from a pollution perspective. A potential alternative being researched is that of biopolymers, in particular those produced by microorganisms such as everyone’s favorite bacterium Escherichia coli (E. coli).

These bacteria were the subject of a recent biopolymer study by [Tong Un Chae] et al., as published in Nature Chemical Biology (paywalled, break-down on Arstechnica).

By genetically engineering E. coli bacteria to use one of their survival energy storage pathways instead for synthesizing long chains of polyester amides (PEAs), the researchers were able to make the bacteria create long chains of mostly pure PEA. A complication here is that this modified pathway is not exactly picky about what amino acid monomers to stick onto the chain next, including metabolism products.

Although using genetically engineered bacteria for the synthesis of products on an industrial scale isn’t uncommon (see e.g. the synthesis of insulin), it would seem that biosynthesis of plastics using our prokaryotic friends isn’t quite ready yet to graduate from laboratory experiments.

❌
❌