Vista Normal

Hay nuevos artículos disponibles. Pincha para refrescar la página.
AnteayerSalida Principal

Amazing Oscilloscope Demo Scores The Win At Revision 2025

Por: Lewin Day
26 Abril 2025 at 08:00

Classic demos from the demoscene are all about showing off one’s technical prowess, with a common side order of a slick banging soundtrack. That’s precisely what [BUS ERROR Collective] members [DJ_Level_3] and [Marv1994] delivered with their prize-winning Primer demo this week.

This demo is a grand example of so-called “oscilloscope music”—where two channels of audio are used to control an oscilloscope in X-Y mode. The sounds played determine the graphics on the screen, as we’ve explored previously.

The real magic is when you create very cool sounds that also draw very cool graphics on the oscilloscope. The Primer demo achieves this goal perfectly. Indeed, it’s intended as a “primer” on the very artform itself, starting out with some simple waveforms and quickly spiraling into a graphical wonderland of spinning shapes and morphing patterns, all to a sweet electronic soundtrack. It was created with a range of tools, including Osci-Render and apparently Ableton 11, and the recording performed on a gorgeous BK Precision Model 2120 oscilloscope in a nice shade of green.

If you think this demo is fully sick, you’re not alone. It took out first place in the Wild category at the Revision 2025 demo party, as well as the Crowd Favorite award. High praise indeed.

We love a good bit of demoscene magic around these parts.

Thanks to [STrRedWolf] for the tip!

Virtual Nodes, Real Waves: a Colpitts Walkthrough

23 Abril 2025 at 05:00

If you’ve ever fumbled through circuit simulation and ended up with a flatline instead of a sine wave, this video from [saisri] might just be the fix. In this walkthrough she demonstrates simulating a Colpitts oscillator using NI Multisim 14.3 – a deceptively simple analog circuit known for generating stable sine waves. Her video not only shows how to place and wire components, but it demonstrates why precision matters, even in virtual space.

You’ll notice the emphasis on wiring accuracy at multi-node junctions, something many tutorials skim over. [saisri] points out that a single misconnected node in Multisim can cause the circuit to output zilch. She guides viewers step-by-step, starting with component selection via the “Place > Components” dialog, through to running the simulation and interpreting the sine wave output on Channel A. The manual included at the end of the video is a neat bonus, bundling theory, waveform visuals, and circuit diagrams into one handy PDF.

If you’re into precision hacking, retro analogue joy, or just love watching a sine wave bloom onscreen, this is worth your time. You can watch the original video here.

Low Cost Oscilloscope Gets Low Cost Upgrades

20 Abril 2025 at 14:00

Entry-level oscilloscopes are a great way to get some low-cost instrumentation on a test bench, whether it’s for a garage lab or a schoolroom. But the cheapest ones are often cheap for a reason, and even though they work well for the price they won’t stand up to more advanced equipment. But missing features don’t have to stay missing forever, as it’s possible to augment them to get some of these features. [Tommy’s] project shows you one way to make a silk purse from a sow’s ear, at least as it relates to oscilloscopes.

Most of the problem with these lower-cost tools is their low precision due to fewer bits of analog-digital conversion. They also tend to be quite noisy, further lowering the quality of the oscilloscope. [Tommy] is focusing his efforts on the DSO138-mini, an oscilloscope with a bandwidth of 100 kHz and an effective resolution of 10 bits. The first step is to add an anti-aliasing filter to the input, which is essentially a low-pass filter that removes high frequency components of the signal, which could cause a problem due to the lower resolution of the device. After that, digital post-processing is done on the output, which removes noise caused by the system’s power supply, among other things, and essentially acts as a second low-pass filter.

In part 2 of the project, [Tommy] demonstrates the effectiveness of these two methods with experimental data, showing that a good percentage of the noise on a test signal has been removed from the output. All the more impressive here is that the only additional cost besides the inexpensive oscilloscope itself is for a ceramic capacitor that costs around a dollar. We were also impressed: [Tommy] is a junior in high school!

Presumably, you could apply these techniques to other inexpensive equipment, like this even cheaper oscilloscope based on the ESP32.

❌
❌