Vista Normal

Hay nuevos artículos disponibles. Pincha para refrescar la página.
AnteayerSalida Principal

The SS United States: The Most Important Ocean Liner We May Soon Lose Forever

Por: Maya Posch
27 Junio 2024 at 14:30

Although it’s often said that the era of ocean liners came to an end by the 1950s with the rise of commercial aviation, reality isn’t quite that clear-cut. Coming out of the troubled 1940s arose a new kind of ocean liner, one using cutting-edge materials and propulsion, with hybrid civil and military use as the default, leading to a range of fascinating design decisions. This was the context in which the SS United States was born, with the beating heart of the US’ fastest battle ships, with light-weight aluminium structures and survivability built into every single aspect of its design.

Outpacing the super-fast Iowa-class battleships with whom it shares a lot of DNA due to its lack of heavy armor and triple 16″ turrets, it easily became the fastest ocean liner, setting speed records that took decades to be beaten by other ocean-going vessels, though no ocean liner ever truly did beat it on speed or comfort. Tricked out in the most tasteful non-flammable 1950s art and decorations imaginable, it would still be the fastest and most comfortable way to cross the Atlantic today. Unfortunately ocean liners are no longer considered a way to travel in this era of commercial aviation, leading to the SS United States and kin finding themselves either scrapped, or stuck in limbo.

In the case of the SS United States, so far it has managed to escape the cutting torch, but while in limbo many of its fittings were sold off at auction, and the conservation group which is in possession of the ship is desperately looking for a way to fund the restoration. Most recently, the owner of the pier where the ship is moored in Camden, New Jersey got the ship’s eviction approved by a judge, leading to very tough choices to be made by September.

A Unique Design

WW II-era United States Maritime Commission (MARCOM) poster.
WW II-era United States Maritime Commission (MARCOM) poster.

The designer of the SS United States is William Francis Gibbs, who despite being a self-taught engineer managed to translate his life-long passion for shipbuilding into a range of very notable ships. Many of these were designed at the behest of the United States Maritime Commission (MARCOM), which was created by the Merchant Marine Act of 1936, until it was abolished in 1950. MARCOM’s task was to create a merchant shipbuilding program for hundreds of modern cargo ships that would replace the World War I vintage vessels which formed the bulk of the US Merchant Marine. As a hybrid civil and federal organization, the merchant marine is intended to provide the logistical backbone for the US Navy in case of war and large-scale conflict.

The first major vessel to be commissioned for MARCOM was the SS America, which was an ocean liner commissioned in 1939 and whose career only ended in 1994 when it (then named the American Star) wrecked at the Canary Islands. This came after it had been sold in 1992 to be turned into a five-star hotel in Thailand. Drydocking in 1993 had revealed that despite the advanced age of the vessel, it was still in remarkably good condition.

Interestingly, the last merchant marine vessel to be commissioned by MARCOM was the SS United States, which would be a hybrid civilian passenger liner and military troop transport. Its sibling, the SS America, was in Navy service from 1941 to 1946 when it was renamed the USS West Point (AP-23) and carried over 350,000 troops during the war period, more than any other Navy troopship. Its big sister would thus be required to do all that and much more.

Need For Speed

SS United States colorized promotional B&W photograph. The ship's name and an American flag have been painted in position here as both were missing when this photo was taken during 1952 sea trials.
SS United States colorized promotional B&W photograph. The ship’s name and an American flag have been painted in position here as both were missing when this photo was taken during 1952 sea trials.

William Francis Gibbs’ naval architecture firm – called Gibbs & Cox by 1950 after Daniel H. Cox joined – was tasked to design the SS United States, which was intended to be a display of the best the United States of America had to offer. It would be the largest, fastest ocean liner and thus also the largest and fastest troop and supply carrier for the US Navy.

Courtesy of the major metallurgical advances during WW II, and with the full backing of the US Navy, the design featured a military-style propulsion plant and a heavily compartmentalized design following that of e.g. the Iowa-class battleships. This meant two separate engine rooms and similar levels of redundancy elsewhere, to isolate any flooding and other types of damage. Meanwhile the superstructure was built out of aluminium, making it both very light and heavily corrosion-resistant. The eight US Navy M-type boilers (run at only 54% of capacity) and a four-shaft propeller design took lessons learned with fast US Navy ships to reduce vibrations and cavitation to a minimum. These lessons include e.g. the the five- and four-bladed propeller design also seen used with the Iowa-class battleships with their newer configurations.

Another lessons-learned feature was a top to bottom fire-proofing after the terrible losses of the SS Morro Castle and SS Normandie, with no wood, fabrics or other flammable materials onboard, leading to the use of glass, metal and spun-glass fiber, as well as fireproof fabrics and carpets. This extended to the art pieces that were onboard the ship, as well as the ship’s grand piano which was made from mahogany whose inability to ignite was demonstrated by trying to burn it with a gasoline fire.

The actual maximum speed that the SS United States can reach is still unknown, with it originally having been a military secret. Its first speed trial supposedly saw the vessel hit an astounding 43 knots (80 km/h), though after the ship was retired from the United States Lines (USL) by the 1970s and no longer seen as a naval auxiliary asset, its top speed during the June 10, 1952 trial was revealed to be 38.32 knots (70.97 km/h). In service with USL, its cruising speed was 36 knots, gaining it the Blue Riband and rightfully giving it its place as America’s Flagship.

A Fading Star

The SS United States was withdrawn from passenger service by 1969, in a very unexpected manner. Although the USL was no longer using the vessel, it remained a US Navy reserve vessel until 1978, meaning that it remained sealed off to anyone but US Navy personnel during that period. Once the US Navy no longer deemed the vessel relevant for its needs in 1978, it was sold off, leading to a period of successive owners. Notable was Richard Hadley who had planned to convert it into seagoing time-share condominiums, and auctioned off all the interior fittings in 1984 before his financing collapsed.

In 1992, Fred Mayer wanted to create a new ocean liner to compete with the Queen Elizabeth, leading him to have the ship’s asbestos and other hazardous materials removed in Ukraine, after which the vessel was towed back to Philadelphia in 1996, where it has remained ever since. Two more owners including Norwegian Cruise Line (NCL) briefly came onto the scene, but economic woes scuttled plans to revive it as an active ocean liner. Ultimately NCL sought to sell the vessel off for scrap, which led to the SS United States Conservancy (SSUSC) to take over ownership in 2010 and preserve the ship while seeking ways to restore and redevelop the vessel.

Considering that the running mate of the SS United States (the SS America) was lost only a few years prior, this leaves the SS United States as the only example of a Gibbs ocean liner, and a poignant reminder of what would have been a highlight of the US’s marine prowess. Compared to the United Kingdom’s record here, with the Queen Elizabeth 2 (QE2, active since 1969) now a floating hotel in Dubai and the Queen Mary 2‘s maiden voyage in 2004, the US looks to be rather meager when it comes to preserving its ocean liner legacy.

End Of The Line?

The curator of the Iowa-class USS New Jersey (BB-62, currently fresh out of drydock), Ryan Szimanski, walked over from his museum ship last year to take a look at the SS United States, which is moored literally within viewing distance from his own pride and joy. Through the videos he made, one gains a good understanding of both how stripped the interior of the ship is, but also how amazingly well-conserved the ship is today. Even after decades without drydocking or in-depth maintenance, the ship looks like could slip into a drydock tomorrow and come out like new a year or so later.

At the end of all this, the question remains whether the SS United States deserves it to be preserved. There are many arguments for why this would the case, from its unique history as part of the US Merchant Marine, its relation to the highly successful SS America, it being effectively a sister ship to the four Iowa-class battleships, as well as a strong reminder of the importance of the US Merchant Marine at some point in time. The latter especially is a point which professor Sal Mercogliano (from What’s Going on With Shipping? fame) is rather passionate about.

Currently the SSUSC is in talks with a New York-based real-estate developer about a redevelopment concept, but this was thrown into peril when the owner of the pier suddenly doubled the rent, leading to the eviction by September. Unless something changes for the better soon, the SS United States stands a good chance of soon following the USS Kitty Hawk, USS John F. Kennedy (which nearly became a museum ship) and so many more into the scrapper’s oblivion.

What, one might ask, is truly in the name of the SS United States?

Hackaday Links: June 23, 2024

23 Junio 2024 at 23:00
Hackaday Links Column Banner

When a ransomware attack targets something like a hospital, it quickly becomes a high-profile event that understandably results in public outrage. Hospitals are supposed to be backstops for society, a place to go when it all goes wrong, and paralyzing their operations for monetary gain by taking over their information systems is just beyond the pale. Tactically, though, it makes sense; their unique position in society seems to make it more likely that they’ll pay up.

Which is why the ongoing cyberattack against car dealerships is a little perplexing — can you think of a less sympathetic victim apart from perhaps the Internal Revenue Service? Then again, we’re not in the ransomware business, so maybe this attack makes good financial sense. And really, judging by the business model of the primary target of these attacks, a company called CDK Global, it was probably a smart move. We had no idea that there was such a thing as a “Dealer Management System” that takes care of everything from financing to service, and that shutting down one company’s system could cripple an entire industry, but there it is.

Water may seem like the enemy for anyone who gets in trouble while swimming, but it’s really time that they’re fighting. Even a strong swimmer can quickly become exhausted fighting wind and waves; add in the hypothermia that’ll eventually set in even in water as warm as a bath, and the difference between life and death can come down to seconds. Getting help to a floundering swimmer isn’t easy, though, as lifeguards can only swim so fast.

But a new remotely operated rescue boat aims to change that, by getting to someone in trouble as fast as possible. Named EMILY, for “Emergency Integrated Lifesaving Lanyard,” the unit is a compact electrically powered rescue boat that can be rapidly deployed by lifeguards, who remotely pilot it to the victim. The boat’s deck is covered with what looks like survival gear, most of which would probably be of more use to the lifeguard upon their arrival than to the swimmer, who would likely just use the boat for flotation. As such, this makes way more sense than sending a drone out there, which at best could only drop a life ring. At $12,000 a piece, these boats aren’t cheap, but for the families who lost their kids in 2022 who donated them, they probably seem like quite a bargain. Here’s hoping they pay off.

We can’t be sure, but we’ve got a vague memory of playing a game called Lunar Landing way back in the day. It would likely have been on a TRS-80 in our local Radio Shack store, and if memory serves, we never got particularly good at the text-based simulator. Happily, though, we can now at least attempt to foist our lack of skills off on a 55-year-old bug in the software. Recently discovered by the excellently named Martin C. Martin while trying to optimize the fuel burn schedule to land softly with the most fuel remaining — the key to a high score, as we recall — the bug makes it so a tiny change in burn rate gives wildly different results. The post-mortem of his search and the analysis of the code, written by high school student Jim Storer only months after the real moon landing in 1969, is very interesting. We especially appreciated the insights into how Storer wrote it, revealed via personal communications. It’s a great look at a piece of computer history, and hats off to both Storer and Martin — although we haven’t seen a CVE posted for this yet.

We know that Minitel terminals are highly collectible, but this is ridiculous. Granted, the Minitel occupies a unique place in computer history, and the boxy design of the original CRT and keyboard terminal was not without its charms. But this particular terminal seems to have had a Very Bad Day in the recent past and is now on the chopping block for a mere €430. To be fair, the eBay user in France has listed the Dalí-esque Minitel as an objet d’art; at that price, we’d like to at least get some usable parts from it to fix other terminals, but that doesn’t seem likely. Somebody will probably buy it, though — no accounting for taste.

And finally, AnimaGraffs is back, this time with a deep dive into the Bell 407 helicopter. We’ve been big fans of his work for a while and have featured a few of his videos in this space, including his look inside the SR-71 Blackbird spy plane. The new video is richly detailed and includes not only the engineering that goes into rotorcraft but also the physics that makes them work and makes them so challenging to fly. Enjoy!

GlowBlaster Uses 405 nm Laser To Make Its Mark

Por: Tom Nardi
4 Junio 2024 at 11:00

Ever wish you could do a little target shooting in a galaxy far, far away? Well then you’re in luck, as the Star Wars inspired GlowBlaster designed by [Louis Abbott] can help you realize those dreams with a real-life laser pistol — albeit a much weaker one than you’d want to carry into a Mos Eisley cantina.

Inside the 3D printed frame of the GlowBlaster is a 5 mW 405 nm module, an Arduino Nano, a speaker, a vibration motor, and a 9 V battery. When you pull the trigger, it pushes down on a 12 mm tactile button which causes the Arduino to fire the laser and sprinkle in a bit of theatrics by way of the speaker and vibration motor. There’s also a second button on the side of the blaster that lets you pick between firing modes.

The idea behind this project is that even a momentary blast from a 405 nm laser will excite a phosphorescent material enough that it will show a hit. So all you’ve got to do is draw a target on a glow-in-the-dark sheet, and you’ll be able to see where your shots land from clear across the doom. Admittedly it will have to be a dimly lit room, but still.

Technically that 5 mW figure puts the GlowBlaster’s output on par with a laser pointer, but in the documentation, [Louis] cautions that laser modules sourced online are often more powerful than their labels claim. So you, and anyone else around, would be wise to wear eye protection while the laser is being fired.

This is a far simpler solution than previous laser marksmanship projects we’ve covered, as the target side is totally passive. Although we have to admit, seeing the target actually get knocked down is a lot of fun.

You’ve Probably Never Considered Taking an Airship To Orbit

Por: Lewin Day
13 Mayo 2024 at 14:00

There have been all kinds of wild ideas to get spacecraft into orbit. Everything from firing huge cannons to spinning craft at rapid speed has been posited, explored, or in some cases, even tested to some degree. And yet, good ol’ flaming rockets continue to dominate all, because they actually get the job done.

Rockets, fuel, and all their supporting infrastructure remain expensive, so the search for an alternative goes on. One daring idea involves using airships to loft payloads into orbit. What if you could simply float up into space?

Lighter Than Air

NASA regularly launches lighter-than-air balloons to great altitudes, but they’re not orbital craft. Credit: NASA, public domain

The concept sounds compelling from the outset. Through the use of hydrogen or helium as a lifting gas, airships and balloons manage to reach great altitudes while burning zero propellant. What if you could just keep floating higher and higher until you reached orbital space?

This is a huge deal when it comes to reaching orbit. One of the biggest problems of our current space efforts is referred to as the tyranny of the rocket equation. The more cargo you want to launch into space, the more fuel you need. But then that fuel adds more weight, which needs yet more fuel to carry its weight into orbit. To say nothing of the greater structure and supporting material to contain it all.

Carrying even a few extra kilograms of weight to space can require huge amounts of additional fuel. This is why we use staged rockets to reach orbit at present. By shedding large amounts of structural weight at the end of each rocket stage, it’s possible to move the remaining rocket farther with less fuel.

If you could get to orbit while using zero fuel, it would be a total gamechanger. It wouldn’t just be cheaper to launch satellites or other cargoes. It would also make missions to the Moon or Mars far easier. Those rockets would no longer have to carry the huge amount of fuel required to escape Earth’s surface and get to orbit. Instead, they could just carry the lower amount of fuel required to go from Earth orbit to their final destination.

The rumored “Chinese spy balloon” incident of 2023 saw a balloon carrying a payload that looked very much like a satellite. It was even solar powered. However, such a craft would never reach orbit, as it had no viable propulsion system to generate the huge delta-V required. Credit: USAF, public domain

Of course, it’s not that simple. Reaching orbit isn’t just about going high above the Earth. If you just go straight up above the Earth’s surface, and then stop, you’ll just fall back down. If you want to orbit, you have to go sideways really, really fast.

Thus, an airship-to-orbit launch system would have to do two things. It would have to haul a payload up high, and then get it up to the speed required for its desired orbit. That’s where it gets hard. The minimum speed to reach a stable orbit around Earth is 7.8 kilometers per second (28,000 km/h or 17,500 mph). Thus, even if you’ve floated up very, very high, you still need a huge rocket or some kind of very efficient ion thruster to push your payload up to that speed. And you still need fuel to generate that massive delta-V (change in velocity).

For this reason, airships aren’t the perfect hack to reaching orbit that you might think. They’re good for floating about, and you can even go very, very high. But if you want to circle the Earth again and again and again, you better bring a bucketload of fuel with you.

Someone’s Working On It

JP Aerospace founder John Powell regularly posts updates to YouTube regarding the airship-to-orbit concept. Credit: John Powell, YouTube

Nevertheless, this concept is being actively worked on, but not by the usual suspects. Don’t look at NASA, JAXA, SpaceX, ESA, or even Roscosmos. Instead, it’s the work of the DIY volunteer space program known as JP Aerospace.

The organization has grand dreams of launching airships into space. Its concept isn’t as simple as just getting into a big balloon and floating up into orbit, though. Instead, it envisions a three-stage system.

The first stage would involve an airship designed to travel from ground level up to 140,000 feet. The company proposes a V-shaped design with an airfoil profile to generate additional lift as it moves through the atmosphere. Propulsion would be via propellers that are specifically designed to operate in the near-vacuum at those altitudes.

Once at that height, the first stage craft would dock with a permanently floating structure called Dark Sky Station. It would serve as a docking station where cargo could be transferred from the first stage craft to the Orbital Ascender, which is the craft designed to carry the payload into orbit.

The Ascender H1 Variant is the company’s latest concept for an airship to carry payloads from an altitude of 140,000ft and into orbit. Credit: John Powell, YouTube screenshot

The Orbital Ascender itself sounds like a fantastical thing on paper. The team’s current concept is for a V-shaped craft with a fabric outer shell which contains many individual plastic cells full of lifting gas. That in itself isn’t so wild, but the proposed size is. It’s slated to measure 1,828 meters on each side of the V — well over a mile long — with an internal volume of over 11 million cubic meters. Thin film solar panels on the craft’s surface are intended to generate 90 MW of power, while a plasma generator on the leading edge is intended to help cut drag. The latter is critical, as the craft will need to reach hypersonic speeds in the ultra-thin atmosphere to get its payload up to orbital speeds. To propel the craft up to orbital velocity, the team has been running test firings on its own designs for plasma thrusters.

Payload would be carried in two cargo bays, each measuring 30 meters square, and 20 meters deep. Credit: John Powell, YouTube Screenshot

The team at JP Aerospace is passionate, but currently lacks the means to execute their plans at full scale. Right now, the team has some experimental low-altitude research craft that are a few hundred feet long. Presently, Dark Sky Station and the Orbital Ascender remain far off dreams.

Realistically, the team hasn’t found a shortcut to orbit just yet. Building a working version of the Orbital Ascender would require lofting huge amounts of material to high altitude where it would have to be constructed. Such a craft would be torn to shreds by a simple breeze in the lower atmosphere. A lighter-than-air craft that could operate at such high altitudes and speeds might not even be practical with modern materials, even if the atmosphere is vanishingly thin above 140,000 feet.  There are huge questions around what materials the team would use, and whether the theoretical concepts for plasma drag reduction could be made to work on the monumentally huge craft.

The team has built a number of test craft for lower-altitude operation. Credit: John Powell, Youtube Screenshot

Even if the craft’s basic design could work, there are questions around the practicalities of crewing and maintaining a permanent floating airship station at high altitude. Let alone how payloads would be transferred from one giant balloon craft to another. These issues might be solvable with billions of dollars. Maybe. JP Aerospace is having a go on a budget several orders of magnitude more shoestring than that.

One might imagine a simpler idea could be worth trying first. Lofting conventional rockets to 100,000 feet with balloons would be easier and still cut fuel requirements to some degree. But ultimately, the key challenge of orbit remains. You still need to find a way to get your payload up to a speed of at least 8 kilometers per second, regardless of how high you can get it in the air. That would still require a huge rocket, and a suitably huge balloon to lift it!

For now, orbit remains devastatingly hard to reach, whether you want to go by rocket, airship, or nuclear-powered paddle steamer. Don’t expect to float to the Moon by airship anytime soon, even if it sounds like a good idea.

❌
❌