Vista Normal

Hay nuevos artículos disponibles. Pincha para refrescar la página.
AnteayerSalida Principal

Overengineered Freezer Monitor Fills Market Void

19 Mayo 2025 at 23:00

A lot of projects we see around here are built not just because they can be built, but because there’s no other option available. Necessity is the mother of invention, as they say. And for [Jeff] who has many thousands of dollars of food stowed in a chest freezer, his need for something to keep track of his freezer’s status was greater than any commercial offering available. Not only are freezers hard on batteries, they’re hard on WiFi signals as well, so [Jeff] built his own temperature monitor to solve both of these issues.

The obvious solution here is to have a temperature probe that can be fished through the freezer in some way, allowing the microcontroller, battery, and wireless module to operate outside of the harsh environment. [Jeff] is using K-type thermocouples here, wired through the back of the freezer. This one also is built into a block of material which allows him to get more diffuse temperature readings than a standard probe would provide. He’s also solving some other problems with commercially available probes here as well, as many of them require an Internet connection or store data in a cloud. To make sure everything stays local, he’s tying this in to a Home Assistant setup which also allows him to easily make temperature calibrations as well as notify him if anything happens to the freezer.

Although the build is very robust (or, as [Jeff] himself argues, overengineered) he does note that since he built it there have been some additional products offered for sale that fit this niche application. But even so, we always appreciate the customized DIY solution that avoids things like proprietary software, subscriptions, or cloud services. We also appreciate freezers themselves; one of our favorites was this restoration of a freezer with a $700,000 price tag.

Lancing College Shares Critical Design Review for UK CanSat Entry

5 Mayo 2025 at 05:00
UK CanSat Competition, Space Ex, Lancing College, Critical Design Review

A group of students from Lancing College in the UK have sent in their Critical Design Review (CDR) for their entry in the UK CanSat project.

Per the competition guidelines the UK CanSat project challenges students aged 14 to 19 years of age to build a satellite which can relay telemetry data about atmospheric conditions such as could help with space exploration. The students’ primary mission is to collect temperature and pressure readings, and these students picked their secondary mission to be collection of GPS data, for use on planets where GPS infrastructure is available, such as on Earth. This CDR follows their Preliminary Design Review (PDR).

The six students in the group bring a range of relevant skills. Their satellite transmits six metrics every second: temperature, pressure, altitude reading 1, altitude reading 2, latitude, and longitude. The main processor is an Arduino Nano Every, a BMP388 sensor provides the first three metrics, and a BE880 GPS module provides the following three metrics. The RFM69HCW module provides radio transmission and reception using LoRa.

The students present their plan and progress in a Gantt chart, catalog their inventory of relevant skills, assess risks, prepare mechanical and electrical designs, breadboard the satellite circuitry and receiver wiring, design a PCB in KiCad, and develop flow charts for the software. The use of Blender for data visualization was a nice hack, as was using ChatGPT to generate an example data file for testing purposes. Mechanical details such as parachute design and composition are worked out along with a shiny finish for high visibility. The students conduct various tests to ensure the suitability of their design and then conduct an outreach program to advertise their achievements to their school community and the internet at large.

We here at Hackaday would like to wish these talented students every success with their submission and we hope you had good luck on launch day, March 4th!

The backbone of this project is the LoRa technology and if you’re interested in that we’ve covered that here at Hackaday many times before, such as in this rain gauge and these soil moisture sensors.

❌
❌