When the AMSAT-OSCAR 7 (AO-7) amateur radio satellite was launched in 1974, its expected lifespan was about five years. The plucky little satellite made it to 1981 when a battery failure caused it to be written off as dead. Then, in 2002 it came back to life. The prevailing theory being that one of the cells in the satellites NiCd battery pack, in an extremely rare event, failed open — thus allowing the satellite to run (intermittently) off its solar panels.
In a recent video by [Ben] on the AE4JC Amateur Radio YouTube channel goes over the construction of AO-7, its operation, death and subsequent revival are covered, as well as a recent QSO (direct contact).
The battery is made up of multiple individual cells.
The solar panels covering this satellite provided a grand total of 14 watts at maximum illumination, which later dropped to 10 watts, making for a pretty small power budget. The entire satellite was assembled in a ‘clean room’ consisting of a sectioned off part of a basement, with components produced by enthusiasts associated with AMSAT around the world. Onboard are two radio transponders: Mode A at 2 meters and Mode B at 10 meters, as well as four beacons, three of which are active due to an international treaty affecting the 13 cm beacon.
Positioned in a geocentric LEO (1,447 – 1,465 km) orbit, it’s quite amazing that after 50 years it’s still mostly operational. Most of this is due to how the satellite smartly uses the Earth’s magnetic field for alignment with magnets as well as the impact of photons to maintain its spin. This passive control combined with the relatively high altitude should allow AO-7 to function pretty much indefinitely while the PV panels keep producing enough power. All because a NiCd battery failed in a very unusual way.
In 2015, Tim Ellis and Jordan Noone founded Relativity Space around an ambitious goal: to be the first company to put a 3D printed rocket into orbit. While additive manufacturing was already becoming an increasingly important tool in the aerospace industry, the duo believed it could be pushed further than anyone had yet realized.
Rather than assembling a rocket out of smaller printed parts, they imagined the entire rocket being produced on a huge printer. Once the methodology was perfected, they believed rockets could be printed faster and cheaper than they could be traditionally assembled. What’s more, in the far future, Relativity might even be able to produce rockets off-world in fully automated factories. It was a bold idea, to be sure. But then, landing rockets on a barge in the middle of the ocean once seemed pretty far fetched as well.
An early printed propellant tank.
Of course, printing something the size of an orbital rocket requires an exceptionally large 3D printer, so Relativity Space had to built one. It wasn’t long before the company had gotten to the point where they had successfully tested their printed rocket engine, and were scaling up their processes to print the vehicle’s propellant tanks. In 2018 Bryce Salmi, then an avionics hardware engineer at Relatively Space, gave a talk at Hackaday Supercon detailing the rapid progress the company had made so far.
Just a few years later, in March of 2023, the Relativity’s first completed rocket sat fueled and ready to fly on the launch pad. The Terran 1 rocket wasn’t the entirely printed vehicle that Ellis and Noone had imagined, but with approximately 85% of the booster’s mass being made up of printed parts, it was as close as anyone had ever gotten before.
The launch of Terran 1 was a huge milestone for the company, and even though a problem in the second stage engine prevented the rocket from reaching orbit, the flight proved to critics that a 3D printed rocket could fly and that their manufacturing techniques were sound. Almost immediately, Relativity Space announced they would begin work on a larger and more powerful successor to the Terran 1 which would be more competitive to SpaceX’s Falcon 9.
Now, after an administrative shakeup that saw Tim Ellis replaced as CEO, the company has released a nearly 45 minute long video detailing their plans for the next Terran rocket — and explaining why they won’t be 3D printing it.
Meet the New Boss
For the mainstream press, the biggest story has been that former Google chief Eric Schmidt would be taking over as Relativity’s CEO. Tim Ellis will remain on the company’s board, but likely won’t have much involvement in the day-to-day operation of the company. Similarly, co-founder Jordan Noone stepped down from chief technology officer to take on an advisory role back in 2020.
Eric Schmidt
With the two founders of the company now sidelined, and despite the success of the largely 3D printed Terran 1, the video makes it clear that they’re pursuing a more traditional approach for the new Terran R rocket. At several points in the presentation, senior Relativity staffers explain the importance of remaining agile in the competitive launch market, and caution against letting the company’s historic goals hinder their path forward. They aren’t abandoning additive manufacturing, but it’s no longer the driving force behind the program.
For his part, The New York Times reports that Schmidt made a “significant investment” in Relativity Space to secure controlling interest in the company and his new position as CEO, although the details of the arrangement have so far not been made public. One could easily dismiss this move as Schmidt’s attempt to buy into the so-called “billionaire space race”, but it’s more likely he simply sees it as an investment in a rapidly growing industry.
Even before he came onboard, Relativity Space had amassed nearly $3 billion in launch contracts. Between his considerable contacts in Washington, and his time as the chair of the DoD’s Defense Innovation Advisory Board, it’s likely Schmidt will attempt to put Relativity the running for lucrative government launches as well.
All they need is a reliable rocket, and they’ll have a revenue stream for years.
Outsourcing Your Way to Space
In general, New Space companies like SpaceX and Rocket Lab have been far more open about their design and manufacturing processes than the legacy aerospace players. But even still, the video released by Relativity Space offers an incredibly transparent look at how the company is approaching the design of Terran R.
One of the most interesting aspects of the rocket’s construction is how many key components are being outsourced to vendors. According to the video, Relativity Space has contracted out the manufacturing of the aluminium “domes” that cap off the propellant tanks, the composite overwrapped pressure vessels (COPVs) that hold high pressure helium at cryogenic temperatures, and even the payload fairings.
This isn’t like handing the construction of some minor assemblies off to a local shop — these components are about as flight-critical as you can possibly get. In 2017, SpaceX famously lost one of their Falcon 9 rockets (and its payload) in an explosion on the launch pad due to a flaw in one of the booster’s COPVs. It’s believed the company ultimately brought production of COPVs in-house so they could have complete control of their design and fabrication.
Unpacking a shipment of composite overwrapped pressure vessels (COPVs) for Terran R
Farming out key components of Terran R to other, more established, aerospace companies is a calculated risk. On one hand, it will allow Relativity Space to accelerate the booster’s development time, and in this case time is very literally money. The sooner Terran R is flying, the sooner it can start bringing in revenue. The trade-off is that their launch operations will become dependent on the performance of said companies. If the vendor producing their fairings runs into a production bottleneck, there’s little Relativity Space can do but wait. Similarly, if the company producing the propellant tank domes decides to raise their prices, that eats into profits.
For the long term security of the project, it would make the most sense for Relativity to produce all of Terran R’s major components themselves. But at least for now, the company is more concerned with getting the vehicle up and running in the most expedient manner possible.
Printing Where it Counts
Currently, 3D printing a tank dome simply takes too long.
In some cases, this is where Relativity is still banking on 3D printing in the long term. As explained in the video by Chief Technology Officer Kevin Wu, they initially planned on printing the propellant tank domes out of aluminum, but found that they couldn’t produce them at a fast enough rate to support their targeted launch cadence.
At the same time, the video notes that the state-of-the-art in metal printing is a moving target (in part thanks to their own research and development), and that they are continuing to improve their techniques in parallel to the development of Terran R. It’s not hard to imagine a point in the future where Relativity perfects printing the tank domes and no longer needs to outsource them.
While printing the structural components of the rocket hasn’t exactly worked out as Relativity hoped, they are still fully committed to printing the booster’s Aeon R engines. Printing the engine not only allows for rapid design iteration, but the nature of additive manufacturing makes it easy to implement features such as integrated fluid channels which would be difficult and expensive to produce traditionally.
Printing an Aeon R engine
Of course, Relativity isn’t alone in this regard. Nearly every modern rocket engine is using at least some 3D printed components for precisely the same reasons, and they have been for some time now.
Which in the end, is really the major takeaway from Relativity’s update video. Though the company started out with an audacious goal, and got very close to reaching it, in the end they’ve more or less ended up where everyone else in aerospace finds themselves in 2025. They’ll use additive manufacturing where it makes sense, partner with outside firms when necessary, and use traditional manufacturing methods where they’ve proven to be the most efficient.
It’s not as exciting as saying you’ll put the world’s first 3D printed rocket into space, to be sure. But it’s the path that’s the most likely to get Terran R on the launch pad within the next few years, which is where they desperately need to be if they’ll have any chance of catching up to the commercial launch providers that are already gobbling up large swaths of the market.
Firefly’s Blue Ghost lander’s first look at the solar eclipse as it began to emerge from its Mare Crisium landing site on March 14 at 5:30 AM UTC. (Credit: Firefly Aerospace)
After recently landing at the Moon’s Mare Crisium, Firefly’s Blue Ghost lunar lander craft was treated to a spectacle that’s rarely observed: a total solar eclipse as seen from the surface of the Moon. This entire experience was detailed on the Blue Ghost Mission 1 live blog. As the company notes, this is the first time that a commercial entity has been able to observe this phenomenon.
During this event, the Earth gradually moved in front of the Sun, as observed from the lunar surface. During this time, the Blue Ghost lander had to rely on its batteries as it was capturing the solar eclipse with a wide-angle camera on its top deck.
Unlike the Blood Moon seen from the Earth, there was no such cool effect observed from the Lunar surface. The Sun simply vanished, leaving a narrow ring of light around the Earth. The reason for the Blood Moon becomes obvious, however, as the refracting of the sunlight through Earth’s atmosphere changes the normal white-ish light to shift to an ominous red.
The entire sequence of images captured can be observed in the video embedded on the live blog and below, giving a truly unique view of something that few humans (and robots) have so far been able to observe.
Saying farewell is hard, and in the case of the Voyager 1 & 2 spacecraft doubly so, seeing as how they have been with us for more than 47 years. From the highs of the 1970s and 1980s during their primary mission in our Solar System, to their journey into the unknown of Deep Space, every bit of information which their instruments record and send back is something unique that we could not obtain any other way. Yet with the shutting down of two more instruments, both spacecraft are now getting awfully close to the end of their extended missions.
Last February 25 the cosmic ray system (CRS) on Voyager 1 was disabled, with the Low Energy Charged Particle Instrument (LECP) on Voyager 2 to follow on March 24. With each spacecraft losing about 4 watts of available power per year from their RTGs, the next few instruments to be turned off are already known. Voyager 1’s LECP will be turned off next year, with that same year Voyager 2’s CRS also getting disabled.
This would leave both spacecraft with only their magnetometer (MAG) and plasma wave subsystem (PWS). These provide data on the local magnetic field and electron density, respectively, with at least one of these instruments on each spacecraft likely to remain active until the end of this decade, possibly into the next. With some luck both spacecraft will see their 50th birthday before humanity’s only presence in Deep Space falls silent.
What does one do when frustrated at the lack of affordable, open source portable trackers? If you’re [OG-star-tech], you design your own and give it modular features that rival commercial offerings while you’re at it.
What’s a star tracker? It’s a method of determining position based on visible stars, but when it comes to astrophotography the term refers to a sort of hardware-assisted camera holder that helps one capture stable long-exposure images. This is done by moving the camera in such a way as to cancel out the effects of the Earth’s rotation. The result is long-exposure photographs without the stars smearing themselves across the image.
Interested? Learn more about the design by casting an eye over the bill of materials at the GitHub repository, browsing the 3D-printable parts, and maybe check out the assembly guide. If you like what you see, [OG-star-tech] says you should be able to build your own very affordably if you don’t mind 3D printing parts in ASA or ABS. Prefer to buy a kit or an assembled unit? [OG-star-tech] offers them for sale.
Frustration with commercial offerings (or lack thereof) is a powerful motive to design something or contribute to an existing project, and if it leads to more people enjoying taking photos of the night sky and all the wonderful things in it, so much the better.
While we’re still waiting for ET to give us a ring, many worlds might not have life that’s discovered the joys of radio yet. Scientists ran a two-pronged study to see how bacteria might fare on other worlds.
We currently define the Habitable Zone (HZ) of a planet by the likelihood that particular planet can host liquid water due to its peculiar blend of atmosphere and distance from its star. While this doesn’t guarantee the presence of life, its a good first place to start. Trying to expand on this, the scientists used a climate model to refine the boundaries of the HZ for atmosphere’s dominated by H2 and CO2 gases.
Once they determined these limits, they then mixed up some example atmospheres and subjected E. coli to the environments. Their findings “indicate that atmospheric composition significantly affects bacterial growth patterns, highlighting the importance of considering diverse atmospheres in evaluating exoplanet habitability and advancing the search for life beyond Earth.”
If you want to look more into what might be out there, how about analyzing the WOW Signal or looking at what the Drake Equation is all about.
Ever been at a party and landed in a heated argument about exactly where the International Space Station (ISS) is passing over at that very instant? Me neither, but it’s probably happened to someone. Assuming you were in that situation, and lacked access to your smartphone or any other form of internet connected device, you might like the pocket-sized Screen Tracker from [mars91].
The concept is simple. It’s a keychain-sized item that combines an ESP32, a Neopixel LED, and a small LCD screen on a compact PCB with a couple of buttons. It’s programmed to communicate over the ESP32’s WiFi connection to query a small custom website running on AWS. That website processes orbit data for the ISS and the positions of the planets, so they can be displayed on the LCD screen above a map of the Earth. We’re not sure what font it uses, but it looks pretty cool—like something out of a 90s sci-fi movie.
It’s a great little curio, and these sort of projects can have great educational value to boot. Creating something like this will teach you about basic orbits, as well as how to work with screens and APIs and getting embedded devices online. It may sound trivial when you’ve done it before, but you can learn all kinds of skills pursuing builds like these.
Logically we understand that the other planets in the solar system, as well as humanity’s contributions to the cosmos such as the Hubble Space Telescope and the International Space Station, are zipping around us somewhere — but it can be difficult to conceptualize. Is Jupiter directly above your desk? Is the ISS currently underneath you?
If you’ve ever found yourself wondering such things, you might want to look into making something like Space Monitor. Designed by [Kevin Assen], this little gadget is able to literally point out the locations of objects in space. Currently it’s limited to the ISS and Mars, but adding new objects to track is just a matter of loading in the appropriate orbital data.
In addition to slewing around its 3D printed indicator, the Space Monitor also features a round LCD that displays the object currently being tracked, as well as the weather. Reading through the list of features and capabilities of the ESP32-powered device, we get the impression that [Kevin] is using it as a sort of development platform for various concepts. Features like remote firmware updates and the ability to point smartphones to the device’s configuration page via on-screen QR aren’t necessarily needed on a personal-use device, but its great practice for when you do eventually send one of your creations out into the scary world beyond your workbench.
On February 13th of 2023, ARCA of the kilometre cubic neutrino telescope (KM3NeT) detected a neutrino with an estimated energy of about 220 PeV. This event, called KM3-230213A, is the most energetic neutrino ever observed. Although extremely abundant in the universe, neutrinos only weakly interact with matter and thus capturing such an event requires very large detectors. Details on this event were published in Nature.
Much like other types of telescopes, KM3NeT uses neutrinos to infer information about remote objects and events in the Universe, ranging from our Sun to other solar systems and galaxies. Due to the weak interaction of neutrinos they cannot be observed like photons, but only indirectly via e.g. photomultipliers that detect the blue-ish light of Cherenkov radiation when the neutrino interacts with a dense medium, such as the deep sea water in the case of ARCA (Astroparticle Research with Cosmics in the Abyss). This particular detector is located at a depth of 3,450 meters off the coast of Sicily with 700 meter tall detection units (DUs) placed 100 meters apart which consist out of many individual spheres filled with detectors and supporting equipment.
With just one of these high-power neutrinos detected it’s hard to say exactly where or what it originated from, but with each additional capture we’ll get a clearer picture. For a fairly new neutrino telescope project it’s also a promising start especially since the project as a whole is still under construction, with additional detectors being installed off the coasts of France and Greece.
Writingmate.ai is a writing and automation helper for Google Chrome powered by GPT-4. It uses the powerful features of the ChatGPT API to understand and respond to your chat messages and generate copy based on the provided templates. Writingmate.ai can generate, translate, paraphrase and edit any text, draw images, and explain any text on any […]
Mage.space is a free online AI image generator running on Stable Diffusion. The site has a super easy to use interface and a fast generation time. After your generation is complete, you can click on “Enhance” to automatically upscale your image to 2048×2048. Mage.space is currently using the v1.5 Stable Diffusion model.
Missive is an AI-powered email, chat, and task management tool designed for productive teams. It consolidates all internal and external communication channels, including email, SMS, and webchat, into a single collaborative workspace. With features like shared inboxes, scoped conversations, team accountability tracking, and integration with popular productivity apps, Missive aims to streamline workflows and enhance […]
Microsoft Teams is a unified collaboration and communication platform that combines persistent workplace chat, video meetings, file storage, and application integration. It is designed to facilitate teamwork and provide a central hub for collaboration within an organization. MS Teams also has several useful AI features directly integrated into it, which we will go over in […]