Some hacks are so great that when you die you receive the rare honor of both an obituary in the New York Times and an in memoriam article at Hackaday.
The recently deceased, [Ed Smylie], was a NASA engineer leading the effort to save the crew of Apollo 13 with a makeshift gas conduit made from plastic bags and duct tape back in the year 1970. [Ed] died recently, on April 21, in Crossville, Tennessee, at the age of 95.
This particular hack, another in the long and storied history of duct tape, literally required putting a square peg in a round hole. After an explosion crippled the command module the astronauts needed to escape on the lunar excursion module. But the lunar module was only designed to support two people, not three.
The problem was that there was only enough lithium hydroxide onboard the lunar module to filter the air for two people. The astronauts could salvage lithium hydroxide canisters from the command module, but those canisters were square, whereas the canisters for the lunar module were round.
[Ed] and his team famously designed the required adapter from a small inventory of materials available on the space craft. This celebrated story has been told many times, including in the 1995 film, Apollo 13.
Thank you, [Ed], for one of the greatest hacks of all time. May you rest in peace.
Header: Gas conduit adapter designed by [Ed Smylie], NASA, Public domain.
As with all aging bodies, clogged tubes form an increasing issue. So too with the 47-year old Voyager 1 spacecraft and its hydrazine thrusters. Over the decades silicon dioxide from an aging rubber diaphragm in the fuel tank has been depositing on the inside of fuel tubes. By switching between primary, backup and trajectory thrusters the Voyager team has been managing this issue and kept the spacecraft oriented towards Earth. Now this team has performed another amazing feat by reviving the primary thrusters that had been deemed a loss since a heater failure back in 2004.
Unlike the backup thrusters, the trajectory thrusters do not provide roll control, so reviving the primary thrusters would buy the mission a precious Plan B if the backup thrusters were to fail. Back in 2004 engineers had determined that the heater failure was likely unfixable, but over twenty years later the team was willing to give it another shot. Analyzing the original failure data indicated that a glitch in the heater control circuit was likely to blame, so they might actually still work fine.
To test this theory, the team remotely jiggled the heater controls, enabled the primary thrusters and waited for the spacecraft’s star tracker to drift off course so that the thrusters would be engaged by the board computer. Making this extra exciting was scheduled maintenance on the Deep Space Network coming up in a matter of weeks, which would troubleshooting impossible for months.
To their relief the changes appears to have worked, with the heaters clearly working again, as are the primary thrusters. With this fix in place, it seems that Voyager 1 will be with us for a while longer, even as we face the inevitable end to the amazing Voyager program.
You normally think of ELINT — Electronic Intelligence — as something done in secret by shadowy three-letter agencies or the military. The term usually means gathering intelligence from signals that don’t contain speech (since that’s COMINT). But [Nukes] was looking at public data from NASA’s SMAP satellite and made an interesting discovery. Despite the satellite’s mission to measure soil moisture, it also provided data on strange happenings in the radio spectrum.
While 1.4 GHz is technically in the L-band, it is reserved (from 1.400–1.427 GHz) for specialized purposes. The frequency is critical for radio astronomy, so it is typically clear other than low-power safety critical data systems that benefit from the low potential for interference. SMAP, coincidentally, listens on 1.41 GHz and maps where there is interference.
Since there aren’t supposed to be any high-power transmitters at that frequency, you can imagine that anything showing up there is probably something unusual and interesting. In particular, it is often a signature for military jamming since nearby frequencies are often used for passive radar and to control drones. So looking at the data can give you a window on geopolitics at any given moment.
The data is out there, and a simple Python script can pull it. We imagine this is the kind of data that only a spook in a SCIF would have had just a decade or two ago.
A group of students from Lancing College in the UK have sent in their Critical Design Review (CDR) for their entry in the UK CanSat project.
Per the competition guidelines the UK CanSat project challenges students aged 14 to 19 years of age to build a satellite which can relay telemetry data about atmospheric conditions such as could help with space exploration. The students’ primary mission is to collect temperature and pressure readings, and these students picked their secondary mission to be collection of GPS data, for use on planets where GPS infrastructure is available, such as on Earth. This CDR follows their Preliminary Design Review (PDR).
The six students in the group bring a range of relevant skills. Their satellite transmits six metrics every second: temperature, pressure, altitude reading 1, altitude reading 2, latitude, and longitude. The main processor is an Arduino Nano Every, a BMP388 sensor provides the first three metrics, and a BE880 GPS module provides the following three metrics. The RFM69HCW module provides radio transmission and reception using LoRa.
The students present their plan and progress in a Gantt chart, catalog their inventory of relevant skills, assess risks, prepare mechanical and electrical designs, breadboard the satellite circuitry and receiver wiring, design a PCB in KiCad, and develop flow charts for the software. The use of Blender for data visualization was a nice hack, as was using ChatGPT to generate an example data file for testing purposes. Mechanical details such as parachute design and composition are worked out along with a shiny finish for high visibility. The students conduct various tests to ensure the suitability of their design and then conduct an outreach program to advertise their achievements to their school community and the internet at large.
We here at Hackaday would like to wish these talented students every success with their submission and we hope you had good luck on launch day, March 4th!
The backbone of this project is the LoRa technology and if you’re interested in that we’ve covered that here at Hackaday many times before, such as in this rain gauge and these soil moisture sensors.
Telescopes are great tools for observing the heavens, or even surrounding landscapes if you have the right vantage point. You don’t have to be a professional to build one though; you can make all kinds of telescopes as an amateur, as this guide from the Springfield Telesfcope Makers demonstrates.
The guide is remarkably deep and rich; no surprise given that the Springfield Telescope Makers club dates back to the early 20th century. It starts out with the basics—how to select a telescope, and how to decide whether to make or buy your desired instrument. It also explains in good detail why you might want to start with a simple Newtonian reflector setup on Dobsonian mounts if you’re crafting your first telescope, in no small part because mirrors are so much easier to craft than lenses for the amateur. From there, the guide gets into the nitty gritty of mirror production, right down to grinding and polishing techniques, as well as how to test your optical components and assemble your final telescope.
It’s hard to imagine a better place to start than here as an amateur telescope builder. It’s a rich mine of experience and practical advice that should give you the best possible chance of success. You might also like to peruse some of the other telescope projects we’ve covered previously. And, if you succeed, you can always tell us of your tales on the tipsline!
Last week, the mainstream news was filled with headlines about K2-18b — an exoplanet some 124 light-years away from Earth that 98% of the population had never even heard about. Even astronomers weren’t aware of its existence until the Kepler Space Telescope picked it out back in 2015, just one of the more than 2,700 planets the now defunct observatory was able to identify during its storied career. But now, thanks to recent observations by the James Web Space Telescope, this obscure planet has been thrust into the limelight by the discovery of what researchers believe are the telltale signs of life in its atmosphere.
Artist’s rendition of planet K2-18b.
Well, maybe. As you might imagine, being able to determine if a planet has life on it from 124 light-years away isn’t exactly easy. We haven’t even been able to conclusively rule out past, or even present, life in our very own solar system, which in astronomical terms is about as far off as the end of your block.
To be fair the University of Cambridge’s Institute of Astronomy researchers, lead by Nikku Madhusudhan, aren’t claiming to have definitive proof that life exists on K2-18b. We probably won’t get undeniable proof of life on another planet until a rover literally runs over it. Rather, their paper proposes that abundant biological life, potentially some form of marine phytoplankton, is one of the strongest explanations for the concentrations of dimethyl sulfide and dimethyl disulfide that they’ve detected in the atmosphere of K2-18b.
As you might expect, there are already challenges to that conclusion. Which is of course exactly how the scientific process is supposed to work. Though the findings from Cambridge are certainly compelling, adding just a bit of context can show that things aren’t as cut and dried as we might like. There’s even an argument to be made that we wouldn’t necessarily know what the signs of extraterrestrial life would look like even if it was right in front of us.
Life as We Know It
Credit where credit is due, most of the news outlets have so far treated this story with the appropriate amount of skepticism. Reading though the coverage, Cambridge’s findings are commonly described as the “strongest evidence yet” of potential extraterrestrial life, rather than being treated as definitive proof. Well, other than the Daily Mail anyway. They decided to consult with ChatGPT and other AI tools in an effort to find out what lifeforms on K2-18b would look like.
So, AI-generated frogmen renders not withstanding, what makes these findings so difficult to interpret? For one thing, we have very little idea of what extraterrestrial life would actually be like, so proving that it exists is exceptionally difficult. Scientists have precisely one data point for what constitutes as life, and you’re sitting on it. We only know what life on Earth looks like, and while there’s an incredible amount of biodiversity on our home planet, it all still tends to play by the same established rules.
On Earth, dimethyl sulfide (DMS) is produced by phytoplankton.
We assume those rules to be a constant on other planets, but that’s only because we don’t know what else to look for. Consider that the bulk of our efforts in the search for extraterrestrial intelligence (SETI) thus far have been based on the idea that other sentient beings would develop some form of radio technology similar to our own, and that if we simply pointed a receiver at their star, we would be able to pick up their version of I Love Lucy.
This is a preposterous presupposition, which doesn’t even make much sense when compared to humanity’s history. Consider the science, literature, and art that humankind was able to produce before the advent of the electric light. Now imagine that Proxima Centauri’s answer to Beethoven is putting the finishing touches on their latest masterpiece as our radio telescope silently checks their planet off the list of inhabited worlds because it wasn’t emanating any RF transmissions we recognize.
Similarly, here on Earth dimethyl sulfide (DMS) and dimethyl disulfide (DMDS) are produced exclusively by biological processes. DMS specifically is so commonly associated with marine phytoplankton that we often associate its smell with being in proximity of the sea. This being the case, you could see how finding large quantities of these gases in the atmosphere of an alien planet would seem to indicate that it must be teaming with aquatic life.
But just because that’s true on Earth doesn’t mean it’s true on K2-18b. We know these gases can be created abiotically in the laboratory, which means there are alternative explanations to how they could be produced on another planet — even if we can’t explain them currently. Further, a paper released in November 2024 pointed out that DMS was detected on comet 67P/Churyumov–Gerasimenko by the European Space Agency’s Rosetta spacecraft, indicating there’s some unknown method by which it can be produced in the absence of any biological activity.
Finding What You’re Looking For
All that being said, let’s assume for the sake of argument that the presence of dimethyl sulfide and dimethyl disulfide was indeed enough to confirm there was life on the planet. You’d still need to confirm beyond a shadow of a doubt that those gases were present in the atmosphere. So how do you do that?
Within our own solar system, you could send a probe. Which is what’s been suggested to investigate the possibility that phosphine gas exists on Venus. But remember, we’re talking about a planet that’s 124 light-years away. In this case, the only way to study the atmosphere is through spectroscopy — that is, examining the degree to which various wavelengths of light (visible and otherwise) are blocked as they pass through it.
This is, as you may have guessed, easier said than done. The amount of data you can collect from such a distant object, even with an instrument as powerful as the James Webb Space Telescope is minuscule. You need to massage the data with various models to extract any useful information from the noise, and according to some critics, that’s when bias can creep in.
In a recently released paper, Jake Taylor from the University of Oxford argues that the only reason Nikku Madhusudhan and his team found signs of DMS and DMDS in the spectrographic data is because that’s what they were looking for. Given their previous research that potentially detected methane and carbon dioxide in the atmosphere of K2-18b, it’s possible the team was already primed to find further evidence of biological processes on the planet, and were looking a bit too hard to find evidence to back up their theory.
When analyzing the raw data without any preconceived notion of what you’re looking for, Taylor says there’s “no strong statistical evidence” to support the detection of DMS and DMDS in the atmosphere of K2-18b. This conclusion itself will need to be scrutinized, of course, though it does have the benefit of Occam’s razor on its side.
In short, there may or may not be dimethyl sulfide and dimethyl disulfide gases in the atmosphere of K2-18b, and that may or may not mean there’s potentially some form of biological life in the planet’s oceans…which it may or may not actually have. If you’re looking for anything more specific than that, the science is still out.
Space X Starship firing its many Raptor engines. The raptor pioneered the new generation of methalox. (Image: Space X)
Go back a generation of development, and excepting the shuttle-derived systems, all liquid rockets used RP-1 (aka kerosene) for their first stage. Now it seems everybody and their dog wants to fuel their rockets with methane. What happened? [Eager Space] was eager to explain in recent video, which you’ll find embedded below.
At first glance, it’s a bit of a wash: the density and specific impulses of kerolox (kerosene-oxygen) and metholox (methane-oxygen) rockets are very similar. So there’s no immediate performance improvement or volumetric disadvantage, like you would see with hydrogen fuel. Instead it is a series of small factors that all add up to a meaningful design benefit when engineering the whole system.
Methane also has the advantage of being a gas when it warms up, and rocket engines tend to be warm. So the injectors don’t have to worry about atomizing a thick liquid, and mixing fuel and oxidizer inside the engine does tend to be easier. [Eager Space] calls RP-1 “a soup”, while methane’s simpler combustion chemistry makes the simulation of these engines quicker and easier as well.
There are other factors as well, like the fact that methane is much closer in temperature to LOX, and does cost quite a bit less than RP-1, but you’ll need to watch the whole video to see how they all stack up.
We about rocketry fairly often on Hackaday, seeing projects with both liquid-fueled and solid-fueled engines. We’ve even highlighted at least one methalox rocket, way back in 2019. Our thanks to space-loving reader [Stephen Walters] for the tip. Building a rocket of your own? Let us know about it with the tip line.
If you’ve ever fumbled through circuit simulation and ended up with a flatline instead of a sine wave, this video from [saisri] might just be the fix. In this walkthrough she demonstrates simulating a Colpitts oscillator using NI Multisim 14.3 – a deceptively simple analog circuit known for generating stable sine waves. Her video not only shows how to place and wire components, but it demonstrates why precision matters, even in virtual space.
You’ll notice the emphasis on wiring accuracy at multi-node junctions, something many tutorials skim over. [saisri] points out that a single misconnected node in Multisim can cause the circuit to output zilch. She guides viewers step-by-step, starting with component selection via the “Place > Components” dialog, through to running the simulation and interpreting the sine wave output on Channel A. The manual included at the end of the video is a neat bonus, bundling theory, waveform visuals, and circuit diagrams into one handy PDF.
If you’re into precision hacking, retro analogue joy, or just love watching a sine wave bloom onscreen, this is worth your time. You can watch the original video here.
NASA astronaut Catherine Coleman gives ESA astronaut Paolo Nespoli a haircut in the Kibo laboratory on the ISS in 2011. (Credit: NASA)
Although we tend to see mostly the glorious and fun parts of hanging out in a space station, the human body will not cease to do its usual things, whether it involves the digestive system, or even something as mundane as the hair that sprouts from our heads. After all, we do not want our astronauts to return to Earth after a half-year stay in the ISS looking as if they got marooned on an uninhabited island. Introducing the onboard barbershop on the ISS, and the engineering behind making sure that after a decade the ISS doesn’t positively look like it got the 1970s shaggy wall carpet treatment.
The basic solution is rather straightforward: an electric hair clipper attached to a vacuum that will whisk the clippings safely into a container rather than being allowed to drift around. In a way this is similar to the vacuums you find on routers and saws in a woodworking shop, just with more keratin rather than cellulose and lignin.
On the Chinese Tiangong space station they use a similar approach, with the video showing how simple the system is, little more than a small handheld vacuum cleaner attached to the clippers. Naturally, you cannot just tape the vacuum cleaner to some clippers and expect it to get most of the clippings, which is where both the ISS and Tiangong solutions seems to have a carefully designed construction to maximize the hair removal. You can see the ISS system in action in this 2019 video from the Canadian Space Agency.
Of course, this system is not perfect, but amidst the kilograms of shed skin particles from the crew, a few small hair clippings can likely be handled by the ISS’ air treatment systems just fine. The goal after all is to not have a massive expanding cloud of hair clippings filling up the space station.
Writingmate.ai is a writing and automation helper for Google Chrome powered by GPT-4. It uses the powerful features of the ChatGPT API to understand and respond to your chat messages and generate copy based on the provided templates. Writingmate.ai can generate, translate, paraphrase and edit any text, draw images, and explain any text on any […]
Mage.space is a free online AI image generator running on Stable Diffusion. The site has a super easy to use interface and a fast generation time. After your generation is complete, you can click on “Enhance” to automatically upscale your image to 2048×2048. Mage.space is currently using the v1.5 Stable Diffusion model.
Missive is an AI-powered email, chat, and task management tool designed for productive teams. It consolidates all internal and external communication channels, including email, SMS, and webchat, into a single collaborative workspace. With features like shared inboxes, scoped conversations, team accountability tracking, and integration with popular productivity apps, Missive aims to streamline workflows and enhance […]
Microsoft Teams is a unified collaboration and communication platform that combines persistent workplace chat, video meetings, file storage, and application integration. It is designed to facilitate teamwork and provide a central hub for collaboration within an organization. MS Teams also has several useful AI features directly integrated into it, which we will go over in […]