Vista Normal

Hay nuevos artículos disponibles. Pincha para refrescar la página.
Ayer — 11 Diciembre 2024Hackaday

Unexpectedly Interesting Payphone Gives Up Its Secrets

11 Diciembre 2024 at 12:00

Reverse engineering a payphone doesn’t sound like a very interesting project, at least in the United States, where payphones were little more than ruggedized versions of residential phones with a coin mechanism attached. Phones in other parts of the world were far more interesting, though, as this look at the mysteries of a payphone from Israel reveals (in Hebrew; English translation here.)

This is a project [Inbar Raz] worked on quite a while ago, but only got around to writing up recently. The payphone in question was sourced from the usual surplus market channels, and appears to have been removed from service by Israeli telecommunications company Bezeq only shortly before he found it. It was in pretty good shape, and was even still locked tight, making some amateur locksmithing the first order of the day. The internals of the phone are surprisingly complex, with a motherboard that looks more like something from a PC. Date codes on the chips and through-hole construction date the device to the early- to mid-1990s.

With physical access gained, [Inbar] turned to the firmware. An Atmel flash chip seemed a good place to look, and indeed he was able to pull code off the chip. That’s where things took a turn thanks to the CPU the code was written for — the CDP1806, a later version of the more popular but still fringe CDP1802. This required [Inbar] to fall down the rabbit hole of writing a new processor definition file for Ghidra so that the firmware could be reverse-engineered. This got him to the point of understanding 1806 assembly well enough that he was able to re-flash the phone to print debugging messages on the built-in 16×2 LCD screen, which allowed him to figure out which routines were being called under various error conditions.

It doesn’t appear that [Inbar] ever completed the reverse engineering project, but as he points out, what does that even mean? He got inside, took a look around, and made the phone do some cool things it couldn’t do before, and in the process made things easier for anyone working with 1806 processors in Ghidra. That’s a pretty complete win in our books.

The Math Behind the Music of the 80s

11 Diciembre 2024 at 09:00

Although there might have been other music produced or recorded in the 1980s, we may never know of its existence due to the cacophony of all of the various keytars, drum machines, and other synthesized music playing nonstop throughout the decade. There was perhaps no more responsible synthesizer than the Yamaha DX7 either; it nearly single-handedly ushered in the synth pop era. There had been other ways of producing similar sounds before but none were as unique as this keyboard, and for ways beyond just its sound as [Kevin] describes in this write-up.

Part of the reason the DX7 was so revolutionary was that it was among the first accessible synthesizers that was fully digital, meaning could play more than one note at a time since expensive analog circuitry didn’t need to be replicated for multiple keys. But it also generated its tones by using frequency modulation of sine waves in a way that allowed many signals to be combined to form different sounds. While most popular musicians of the 80s used one of the preset sounds of the synthesizer, it could produce an incredible range of diverse sounds if the musician was willing to dig a bit into the programming of this unique instrument.

There were of course other reasons this synthesizer took off. It was incredibly robust, allowing a musician to reliably carry it from show to show without much worry, and it also stood on the shoulders of giants since musicians had been experimenting with various other types of synthesizers for the previous few decades. And perhaps it was at the right place and time for the culture as well. For a look at the goings on inside the chip that powered the device, [Ken Shirriff] did a deep dive into one a few years ago.

From Felt to Fate: Building Your Own Sorting Hat

11 Diciembre 2024 at 06:00
[Wills] and his purple DIY sorting hat

Ever wondered how it feels to have the Sorting Hat decide your fate? [Will Dana] wanted to find out, so he conjured a bit of Hogwarts magic, and crafted a fully animatronic Sorting Hat from scratch. In the video below, he covers every step of bringing this magical purple marvel to life—from rapid joystick movements to the electronics behind it all.

The heart of the project is two 9g servos—one actuates the mouth, and the other controls the eyebrows—powered by an ESP32 microcontroller. Communication between two ESP32 boards ensures smooth operation via the ESP-NOW protocol, making this a wireless wonder. The design process involved using mechanical advantage to solve jittery servo movements, a trick that will resonate with anyone who’s fought with uncooperative motors.

If animatronics or themed projects excite you, Hackaday has covered similar builds, from a DIY BB-8 droid to a robot fox.

A Potential Exploit with the Ext Filesystem

11 Diciembre 2024 at 03:00

The extended filesystem, otherwise known as ext, has been a fundamental part of Linux since before the 1.0 release in 1994. Currently the filesystem is on its fourth major revision, in use since its release in 2008 thanks to its stability, reliability, and backwards compatibility with the other ext filesystem versions. But with that much history there are bound to be a few issues cropping up here and there. [Will] recently found an exploit with this filesystem that can cause a Linux kernel to immediately panic when a manipulated USB drive is inserted into a computer.

[Will] discovered this quirk when investigating the intricacies of the filesystem for problems and other vulnerabilities. A tool called tune2fs, used for administering and modifying ext filesystems, includes the ability to pass certain commands to the Linux kernel when certain situations arise with the filesystem itself, including that the kernel should panic. One situation is that the ext filesystem itself becomes corrupted, which can then cause the kernel panic. Armed with this knowledge, a USB drive can be purposefully given a corrupted ext filesystem which, when plugged into a Linux machine, can cause the computer to shut down.

The post linked above goes into some discussion about how this exploit could be used maliciously to gain access to a Linux system, including rebooting computers where no access to a power button is otherwise enabled or making other changes to the system before needing a reboot to apply the changes. In general, though, it’s good to assume an attacker could take any route to gain access to a machine. This exploit from a few years ago, for example, allowed another Linux tool to be used to gain root access.

Thanks to [Timothy] for the tip!

Flying Drones That Can Walk and Jump into the Air: An Idea With Legs?

Por: Maya Posch
11 Diciembre 2024 at 00:00

When we look at how everyone’s favorite flying dinosaurs get around, we can see that although they use their wings a lot too, their legs are at least as important. Even waddling or hopping about somewhat ungainly on legs is more energy efficient than short flights, and taking off from the ground is helped by jumping into the air with a powerful leap from one’s legs. Based on this reasoning, a team of researchers set out to give flying drones their own bird-inspired legs, with their findings published in Nature (preprint on ArXiv).

The prototype RAVEN (Robotic Avian-inspired Vehicle for multiple ENvironments) drone is capable of hopping, walking, jumping onto an obstacle and jumping for take-off. This allows the drone to get into the optimal position for take-off and store energy in its legs to give it a boost when it takes to the skies. As it turned out, having passive & flexible toes here was essential for stability when waddling around, while jumping tests showed that the RAVEN’s legs provided well over 90% of the required take-off speed.

During take-off experiments the drone was able to jump to an altitude of about 0.4 meters, which allows it to clear ground-based obstacles and makes any kind of ‘runway’ unnecessary. Much like with our avian dinosaur friends the laws of physics dictate that there are strong scaling limits, which is why a raven can use this technique, but a swan or similar still requires a bit of runway instead of jumping elegantly into the air for near-vertical take-off. For smaller flying drones this approach would however absolutely seem to have legs.

3D Printer Eliminates the Printer Bed

10 Diciembre 2024 at 21:00

Anyone who has operated a 3D printer before, especially those new to using these specialized tools, has likely had problems with the print bed. The bed might not always be the correct temperature leading to problems with adhesion of the print, it could be uncalibrated or dirty or cause any number of other issues that ultimately lead to a failed print. Most of us work these problems out through trial and error and eventually get settled in, but this novel 3D printer instead removes the bed itself and prints on whatever surface happens to be nearby.

The printer is the product of [Daniel Campos Zamora] at the University of Washington and is called MobiPrint. It uses a fairly standard, commercially available 3D printer head but attaches it to the base of a modified robotic vacuum cleaner. The vacuum cleaner is modified with open-source software that allows it to map its environment without the need for the manufacturer’s cloud services, which in turn lets the 3D printer print on whichever surface the robot finds in its travels. The goal isn’t necessarily to eliminate printer bed problems; a robot with this capability could have many more applications in the realm of accessibility or even, in the future, printing while on the move.

There were a few surprising discoveries along the way which were mentioned in an IEEE Spectrum article, as [Campos Zamora] found while testing various household surfaces that carpet is surprisingly good at adhering to these prints and almost can’t be unstuck from the prints made on it. There are a few other 3D printers out there that we’ve seen that are incredibly mobile, but none that allow interacting with their environment in quite this way.

Trying to Shatter the World’s Fastest RC Car Record

Por: Maya Posch
10 Diciembre 2024 at 19:00
The RC car is controlled via an FPV setup. (Credit: Luke Bell, YouTube)

Fresh off a world record for the fastest quadcopter, [Luke Bell] decided to try his luck with something more own to earth, namely trying to tackle the world record for the fastest RC car, with the current record set at 360 km/h. Starting off with a first attempt in what will be a video series, the obvious approach seems to be to get some really powerful electric motors, a streamlined body and a disused runway to send said RC car hurtling along towards that golden medal. Of course, if it was that easy, others would have done it already.

With the quadcopter record of nearly 500 km/h which we covered previously, the challenge was in a way easier, as other than air resistance and accidental lithobraking there are no worries about ground texture, tire wear or boundary layer aerodynamics. In comparison, the RC car has to contend with all of these, with the runway’s rough tarmac surface being just one of the issues, along with making sure that the wheels would hold up to the required rotation speed. For the wheels you got options like foam, hard rubber, etc., all with their own advantages and disadvantages, mostly in terms of grip and reliability.

So far speeds of over 200 km/h are easy enough to do, with foam wheels being the preferred option. To push the RC car to 300 km/h and beyond, a lot more experimentation and trial runs will have to be performed. Pending are changes to the aerodynamic design with features also commonly seen in F1 race cars such as downforce spoilers, diffusers and other tricks which should prevent the RC car from (briefly) becoming an RC airplane.

AnteayerHackaday

Updated Mouse Ring Does It With a Joystick

10 Diciembre 2024 at 12:00
A Bluetooth mouse in ring form.

Have you ever wished for easy mouse controls to go along with your VR headset experience? Or maybe you just want a cooler way to mouse in general. In any case, look no further than [rafgaj78]’s Bluetooth Mouse Ring project.

Side view of a Bluetooth mouse in ring form.This is version two, which of course comes with several improvements over version one. The biggest change is from tactile buttons to a joystick input. [rafgaj78] also did away with the power switch, using deep-sleep mode instead. Version two is easier to assemble and offers improved ergonomics, as well as a range of ring sizes.

Like the first version, this ring runs on a Seeed Xiao nRF52840 and is programmed in CircuitPython. There are two modes to choose from. In one mode, the joystick does left and right mouse click and wheel up and down, while the push action recovers the micro from deep sleep. In the other mode, the joystick axis is a mouse pointer mover, and you push down to left click.

We really like this sleek design, and [rafgaj78] has great instructions if you want to build your own. This isn’t the first cool mouse ring we’ve seen, and it certainly won’t be the last.

An Engineer’s Perspective on Baking Gingerbread Houses

10 Diciembre 2024 at 09:00
Optical illusion gingerbread house from an odd perspective

If you’ve ever wanted to merge the worlds of holiday cheer and clever geometry, [Kris Wilk]’s gingerbread house hack is your ultimate inspiration. Shared in a mesmerising video, [Wilk] showcases his 2024 entry for his neighborhood’s gingerbread house contest. Designed in FreeCAD and baked to perfection, this is no ordinary holiday treat. His pièce de résistance was a brilliant trompe l’oeil effect, visible only from one carefully calculated angle. Skip to the last twenty seconds of the video to wrap your head around how it actually looks.

[Wilk] used FreeCAD’s hidden true perspective projection function—a rarity in CAD software. This feature allowed him to calculate the perfect forced perspective, essential for crafting the optical illusion. The supporting structures were printed on a Prusa MK4, while the gingerbread itself was baked at home. Precision photography captured the final reveal, adding a professional touch to this homemade masterpiece. [Wilk]’s meticulous process highlights how accessible tools and a sprinkle of curiosity can push creative boundaries.

For those itching to experiment with optical illusions, this bakery battle is only the beginning. Why not build a similar one inside out? Or construct a gingerbread man in the same way? Fire up the oven, bend your mind, and challenge your CAD skills!

A Simple Robot For Learning About Robotics

Por: Lewin Day
10 Diciembre 2024 at 06:00

Robots are super interesting, but you probably shouldn’t start learning about them with a full-sized industrial SCARA arm or anything. Better to learn with something smaller and simpler to understand. This simple Arduino-powered robot is called Bug, and it aims to be just that.

The design comes to us from [Joshua Stanley]. It’s based around the ubiquitous Arduino Uno, paired with a motor control and I/O shield for more connectivity. The robot uses treads for locomotion—each side has two wheels wrapped in a belt for grip. The robot has a small DC gearmotor driving each belt so it can be driven forwards, backwards, and steered differentially. To perceive the world, it uses an off-the-shelf ultrasonic transceiver module, and an NRF24L01 module for remote control. All this is wrapped up in a basic 3D-printed housing that positions the ultrasonic modules effectively as “eyes” which is kind of cute, all in all.

Despite its small size and simple construction, Bug gets around perfectly well in testing on an outdoor footpath. It even has enough torque to flip itself up at full throttle. For now, [Joshua] notes it’s a glorified remote control car, but he plans to expand it further with more functionality going forward.

We see lots of educational robots around these parts, like this nifty little robot arm. Video after the break.

[Thanks to Jan-Willem for the tip!]

Smartphone Runs Home Server

10 Diciembre 2024 at 03:00

It’s one of the great tragedies of our technological era. Smartphones that feature an incredible amount of computational power compared to computers the past, are largely locked down by carriers or manufacturers, dooming them to performing trivial tasks far below their true capabilities.

But there is hope. In part one of this build, a OnePlus 6T is stripped of its Android operating system in favor of postmarketOS, a Linux distribution based on Alpine designed for a number of Android phones and tablets as well as some Linux-only handhelds. The guide also demonstrates how to remove the battery and use a modified USB-C cable to essentially trick the battery management system into powering up the phone anyway. The second part of the project dives into the software side, getting the Linux system up and running before installing Docker and whichever Docker containers the user needs.

There are a few downsides to running a server from a smartphone. Although there’s plenty of processing power available for a wide range of applications, most phones won’t have Ethernet support out-of-the-box which forces the use of WiFi. There’s also limited storage options available, so a large NAS system may be out of reach. But for something like a home automation system or a music streaming server this could put plenty of older devices to work again. And if you don’t want to hunt for an Android phone that isn’t completely hobbled out-of-the box you might want to try a phone that’s Linux-based from the get-go instead.

Thanks to [JohnU] for the tip!

PlayStation Motherboard Sanded and Scanned, But There’s More To Do

Por: Lewin Day
10 Diciembre 2024 at 00:00

If you want to reverse engineer the boards in a modern console, you’d better have a lab, a lot of fancy gear, and a good few months to dedicate to the task. The humble PlayStation, on the other hand, is more accessible in this regard. [Lawrence Brode] pulled one apart and started documenting it as part of a grander quest for console understanding.

[Lawrence’s] ultimate goal is to create a portable PlayStation using original hardware. That is, rather than cannibalizing an existing console, he wants to build an original portable from scratch. He needed to understand the PlayStation to recreate it, so he started by analyzing the original hardware.

The first part of [Lawrence’s] quest was to try and reverse engineer the PlayStation motherboard itself. The 1990s console has the benefit of only using a two-layer PCB, meaning it’s far easier to trace out than more modern multi-layer designs. [Lawrence] started with a damaged console, pulled out the motherboard, and stripped off all the components. He then cleaned the board, scanned it, and then sandblasted it to remove the solder mask.

He’s begun the work of tracing out signals, and next on the agenda is to create a new custom PCB that’s compatible with the original PlayStation hardware. You can grab his work via GitHub if you’re interested. [Lawrence] is also excited about the possibilities of grabbing the 24-bit RGB signal heading into the GPU and using it for an HDMI output conversion in the future.

It’s always an exciting time in the PlayStation community; we see lots of great hacks on the regular. If you’re cooking up your own, don’t hesitate to drop us a line!

Raspberry Pi 500 and the Case of the Missing M.2 Slot

Por: Maya Posch
9 Diciembre 2024 at 21:00

Raspberry Pi just dropped the new Raspberry Pi 500, which like its predecessor puts the similarly named SBC into a keyboard. In a detailed review and teardown video, [Jeff Geerling] goes over all the details, and what there is to like and not like about this new product.

The new Raspberry Pi 500 with the new Raspberry Pi Monitor. (Credit: Jeff Geerling)
The new Raspberry Pi 500 with the new Raspberry Pi Monitor. (Credit: Jeff Geerling)

Most of the changes relative to the RP400 are as expected, with the change to the same BCM2712 SoC as on the Raspberry Pi 5, while doubling the RAM to 8 GB and of course you get the soft power button. As [Jeff] discovers with the teardown, the odd thing is that the RP500 PCB has the footprints for an M.2 slot, as seen on the above image, but none of the components are populated.

Naturally, [Jeff] ordered up some parts off Digikey to populate these footprints, but without luck. After asking Raspberry Pi, he was told that these footprints as well as those for a PoE feature are there for ‘flexibility to reuse the PCB in other contexts’. Sadly, it seems that these unpopulated parts of the board will have to remain just that, with no M.2 NVMe slot option built-in. With the price bump to $90 from the RP400’s $70 you’ll have to do your own math on whether the better SoC and more RAM is worth it.

In addition to the RP500 itself, [Jeff] also looks at the newly launched Raspberry Pi Monitor, a 15.6″ IPS display for $100. This unit comes with built-in speakers and VESA mount, but as [Jeff] notes in his review, using this VESA mount also means that you’re blocking all the ports, so you have to take the monitor off said VESA mount if you want to plug in or out any cables.

Do 3D Printers Dream of LEGO Sheep?

9 Diciembre 2024 at 19:30
3D scanned image of LEGO sheep

Imagine the power to clone your favorite LEGO piece—not just any piece, but let’s say, one that costs €50 second-hand. [Balazs] from RacingBrick posed this exact question: can a 3D scanner recreate LEGO pieces at home? Armed with Creality’s CR-Scan Otter, he set out to duplicate a humble DUPLO sheep and, of course, tackle the holy grail of LEGO collectibles: the rare LEGO goat.

The CR-Scan Otter is a neat gadget for hobbyists, capable of capturing objects as small as a LEGO piece. While the scanner proved adept with larger, blocky pieces, reflective LEGO plastic posed challenges, requiring multiple scans for detailed accuracy. With clever use of 3D printed tracking points, even the elusive goat came to life—albeit with imperfections. The process highlighted both the potential and the limitations of replicating tiny, complex shapes. From multi-colored DUPLO sheep to metallic green dinosaur jaws, [Balazs]’s experiments show how scanners can fuel customization for non-commercial purposes.

For those itching to enhance or replace their builds, this project is inspiring but practical advice remains: cloning LEGO pieces with a scanner is fun but far from plug-and-play. Check out [Balazs]’s exploration below for the full geeky details and inspiration.

Robot Rodents: How AI Learned to Squeak and Play

9 Diciembre 2024 at 12:00
Render of life-size robot rat animatronic on blue plane

In an astonishing blend of robotics and nature, SMEO—a robot rat designed by researchers in China and Germany — is fooling real rats into treating it like one of their own.

What sets SMEO apart is its rat-like adaptability. Equipped with a flexible spine, realistic forelimbs, and AI-driven behavior patterns, it doesn’t just mimic a rat — it learns and evolves through interaction. Researchers used video data to train SMEO to “think” like a rat, convincing its living counterparts to play, cower, or even engage in social nuzzling. This degree of mimicry could make SMEO a valuable tool for studying animal behavior ethically, minimizing stress on live animals by replacing some real-world interactions.

For builders and robotics enthusiasts, SMEO is a reminder that robotics can push boundaries while fostering a more compassionate future. Many have reservations about keeping intelligent creatures in confined cages or using them in experiments, so imagine applying this tech to non-invasive studies or even wildlife conservation. In a world where robotic dogs, bees, and even schools of fish have come to life, this animatronic rat sounds like an addition worth further exploring. SMEO’s development could, ironically, pave the way for reducing reliance on animal testing.

Debugging the UE1 Paper Tape Reader and Amplification Circuit

Por: Maya Posch
9 Diciembre 2024 at 09:00
The tape reader and amplifiers mounted with the other UE1 modules. (Credit: David Lovett, YouTube)

After recently putting together the paper tape reader for his custom tube-based UE1 computer, [David Lovett] did get squiggles on the outputs, but not quite the right ones. In the most recent video, these issues are addressed one by one, so that this part of the UE1 1-bit computer can be called ‘done’. Starting off the list of issues were the odd readings from the photodiodes, which turned out to be due to the diodes being misaligned and a dodgy solder joint. This allowed [David] to move on to building the (obviously 6AU6 tube-based) amplifier for the photodiode output signals.

Much like the Bendix G-15’s tape reader which served as inspiration, this also meant adding potentiometers to adjust the gain. For the clock signal on the tape, a clock recovery PCB was needed, which should provide the UE1 computer system with both the clocks and the input data.

Using the potentiometers on the amplification board, the output signals can be adjusted at will to give the cleanest possible signal to the rest of the system, which theoretically means that as soon as [David] adds the permanent wiring and a few utility boards to allow the code to manipulate the tape reader (e.g. halt) as well as manual inputs. The UE1 computer system is thus being pretty close to running off tape by itself for the first time and with it being ‘complete’.

Magic Eye Images In Your Spreadsheet

Por: Jenny List
9 Diciembre 2024 at 06:00

Ah, the 1990s. It was a simpler time, when the web was going to be democratic and decentralised, you could connect your Windows 95 PC to the internet without worrying much about it being compromised, and freely download those rave music MP3s. Perhaps you had a Global Hypercolor T-shirt and spent a summer looking like the sweaty idiot you were, and it’s certain you desperately squinted at a magic eye image in a newspaper (remember newspapers?) trying to see the elephant or whatever it was. If you’d like to relive that experience, then [Dave Richeson] has a magic eye image generator for Microsoft Excel.

Unfortunately a proportion of the population including your scribe lack the ability to see these images, a seemingly noise-like pattern of dots on the page computationally generated to fool the visual processing portion of your brain to generate a 3D image. The Excel sheet allows you to create the images, but perhaps most interesting is the explanation of the phenomenon and mathematics which go along with it. Along with a set of test images depicting mathematical subjects, it’s definitely worth a look.

You can download a template and follow the instructions, and from very limited testing here we can see that LibreOffice doesn’t turn its nose up at it, either. Give it a go, and learn afresh the annoyance of trying to unfocus your eyes.

Silicon Carbide May Replace Zirconium Alloys for Nuclear Fuel Rod Cladding

Por: Maya Posch
9 Diciembre 2024 at 03:00

Since the construction of the first commercial light water nuclear power plants (LWR) the design of their fuel rods hasn’t changed significantly. Mechanically robust and corrosion-resistant zirconium alloy (zircalloy) tubes are filled with ceramic fuel pellets, which get assembled into fuel assemblies for loading into the reactor.

A 12' SiGa fuel assembly, demonstrating the ability to scale to full-sized fuel rods. (Credit: DoE)
A 12′ SiGa fuel assembly, demonstrating the ability to scale to full-sized fuel rods. (Credit: DoE)

Now it seems that silicon carbide (SiC) may soon replace the traditional zirconium alloy with General Atomics’ SiGa fuel cladding, which has been tested over the past 120 days in the Advanced Test Reactor at Idaho National Laboratory (INL). This completes the first of a series of tests before SiGa is approved for commercial use.

One of the main advantages of SiC over zircalloy is better resistance to high temperatures — during testing with temperatures well above those experienced with normal operating conditions, the zircalloy rods would burst while the SiC ones remained intact (as in the embedded video). Although normally SiC is quite brittle and unsuitable for such structures, SiGa uses a SiC fiber composite, which allows it to be used in this structural fashion.

Although this development is primarily part of the Department of Energy’s Accident Tolerant Fuel Program and its focus on melt-down proof fuel, the switch to SiC could also solve a major issue with zirconium, being its use as a catalyst with hydrogen formation when exposed to steam. Although with e.g. Fukushima Daiichi’s triple meltdown the zircalloy fuel rods were partially destroyed, it was the formation of hydrogen gas inside the reactor vessels and the hydrogen explosions during venting which worsened what should have been a simple meltdown into something significantly worse.

Hackaday Links: December 8, 2024

9 Diciembre 2024 at 00:00
Hackaday Links Column Banner

For some reason, we never tire of stories highlighting critical infrastructure that’s running outdated software, and all the better if it’s running on outdated hardware. So when we learned that part of the San Francisco transit system still runs on 5-1/4″ floppies, we sat up and took notice. The article is a bit stingy with the technical details, but the gist is that the Automatic Train Control System was installed in the Market Street subway station in 1998 and uses three floppy drives to load DOS and the associated custom software. If memory serves, MS-DOS as a standalone OS was pretty much done by about 1995 — Windows 95, right? — so the system was either obsolete before it was even installed, or the 1998 instance was an upgrade of an earlier system. Either way, the San Francisco Municipal Transportation Agency (SFMTA) says that the 1998 system due to be replaced originally had a 25-year lifespan, so they’re more or less on schedule. Replacement won’t be cheap, though; Hitachi Rail, the same outfit that builds systems that control things like the bullet train in Japan, is doing the job for the low, low price of $212 million.

We don’t know who needs to here this, but we got a tip from Clem Mayer about upcoming changes to EU regulations that might affect the maker community. It concerns the General Product Safety Regulations, or GPSR, which appears to be an extension of current rules that will impose additional compliance burdens on anyone selling products to the EU market on online marketplaces. We won’t pretend to know the intricacies of GPSR, or even the basics, but Smander.com has a brief summary of the rules and how best to comply, which seems to amount to retaining the services of a company to take care of the compliance paperwork. We also took a look at the official EU information page for GPSR, which is pretty thin on information but at least it’s a primary source. If you’re selling kits or other products into the EU market, chances are good that you’re going to need to figure this out, and soon — seems like the rules go into effect December 13th.

You’ve got to feel for the authors of open-source software. As if developing, maintaining, and supporting the software that keeps the Internet running wasn’t a thankless enough job, you can actually get doxxed by your own creation. A case in point is Daniel Stenberg, the original author and lead developer on curl and libcurl. His name and email address are often found in the documentation for products using his software, so frustrated users who find his contact information tend to reach out to him after being ignored by the product’s support team. It seems annoying, and we sympathize with Daniel and others like him, but then again, it’s a measure of your impact that your contact information is literally everywhere.

If you’re in the market for a unique gift for the geek in your life and have an extra $230 to spread around, check out this custom Lego kit of the ASML TWINSCAN EXE:500 extreme UV lithography machine. Actually, strike that; now that we look at the specs, this kit is tiny. It’s only 851 pieces and 13.9″ (35 cm) wide when assembled, and isn’t exactly a richly detailed piece. Sure, Lego kits are fun, but there seem to be much better choices out there; we had a blast putting together the Apollo 11 Lunar Module Eagle kit a few years back, and that was only about $70.

And finally, Festo fans will want to check out this literal air guitar from the automation company’s “Experience Center” in Lupfig, Switzerland. Festo engineers bedazzled an acoustic guitar with pneumatic cylinders and control valves and programmed the system to pluck out the intro riff from AC/DC’s “Thunderstruck.” It’s actually pretty good, and we especially appreciate the pneumatic party whistle that chips in from time to time. There’s a missed opportunity here, though; we really expected a pneumatic cylinder to do the characteristic double rap on the body of the guitar when you get to the “Thun-der!” part. Too bad — maybe for version two.

❌
❌