Vista Normal

Hay nuevos artículos disponibles. Pincha para refrescar la página.
AnteayerSalida Principal

Bit of OpenSCAD Code Caps off Wiremold

Por: Tom Nardi
24 Junio 2024 at 05:00

Wiremold is great stuff — it’s relatively cheap, easy to work with, and offers all sorts of adapters and angle pieces which take the hassle out of running (and hiding) wires. But [Dr. Gerg] found a shortcoming of this otherwise very flexible product: since each run is intended to start and end in a surface mounted box, he couldn’t find an end cap that would let him close off a section.

The solution? A desktop 3D printer and a chunk of OpenSCAD code telling it what to extrude. When you break it down, the Wiremold profile is fairly straightforward, and can be easily described with geometric primitives. A handful of cylinders, a cube or two, tie it all together with the hull() function, and you’re there.

We’d say this would be a fantastic project to cut your OpenSCAD teeth on, but since [Dr. Gerg] was kind enough to share the source code, you don’t have to figure it out on your own. Though there’s still benefit in reading over it if you’re looking for some practical examples of how the “Programmers Solid 3D CAD Modeller” gets things done.

So why would you want a Wiremold endcap? In the case of [Dr. Gerg], it sounds like he was trying to cover up a short run of wire that was running vertically. But we could imagine other applications for this basic design now that it’s out in the wild. For example, a short length of Wiremold outfitted with a pair of printed caps could make for a nice little enclosure if you’ve got a small project that needs protecting.

Turbocase Generates A PCB Shell For You

3 Junio 2024 at 11:00
An example of the case generated for a simple PCB, being shown in the OpenSCAD viewer

Our PCBs greatly benefit from cases – what’s with all the pins that can be accidentally shorted, connectors that stick out of the outline, and cables pulling the board into different directions. Designing a case for your PCB might feel like a fair bit of effort – but it likely isn’t, thanks to projects like turbocase from [Martijn Braam].

This script generates simple and elegant OpenSCAD cases for your KiCad PCBs – you only need to draw a few extra lines in the PCB Editor, that’s it. It makes connector openings, too – add a “Height” property to your connector footprints to have them be handled automatically. Oh, and there’s a few quality-of-life features – if your project has mounting holes, the script will add threaded-insert-friendly standoffs to the case; yet another argument for adding mounting holes to your boards, in case you needed more.

Installing the script is a single line, running it is merely another, and that will cover an overwhelming majority of boards out there; the code is all open too, of course. Want some more customization? Here’s some general project enclosure tutorials for OpenSCAD, and a KiCad-friendly StepUp tutorial. Oh, and of course, there’s many more ways to enclose PCBs – our own [Bob Baddeley] has written a guide to project enclosures that you are bound to learn new things from.

We thank [adistuder] for sharing this with us!

CADmium moves CAD to the Browser

23 Mayo 2024 at 11:00

For plenty of computer users, the operating system of choice is largely a middleman on the way to the browser, which hosts the tools that are most important. There are even entire operating systems with little more than browser support, under the assumption that everything will be done in the browser eventually. We may be one step closer to that type of utopia as well with this software tool called CADmium which runs exclusively in a browser.

As the name implies, this is a computer-aided design (CAD) package which looks to build everything one would need for designing project models in a traditional CAD program like AutoCAD or FreeCAD, but without the burden of needing to carry local files around on a specific computer. [Matt], one of the creators of this ambitious project, lays out the basic structure of a CAD program from the constraint solver, boundary representation (in this case, a modern one built in Rust), the history tracker, and various other underpinnings of a program like this. The group hopes to standardize around JSON files as well, making it easy to make changes to designs on the fly in whatever browser the user happens to have on hand.

While this project is extremely early in the design stage, it looks like they have a fairly solid framework going to get this developed. That said, they are looking for some more help getting it off the ground. If you’ve ever wanted something like this in the browser, or maybe if you’ve ever contributed to the FreeCAD project and have some experience, this might be worth taking a look at.

Dune 3D: Open Source 3D Parametric Modeler From the Maker of Horizon EDA

Por: Maya Posch
5 Mayo 2024 at 08:00

When coming from the world of Autodesk and kin’s proprietary CAD solutions, figuring out which FOSS 3D CAD solution is the right one can be a real chore, as none of them are on the same level. This is what the author of the Horizon EDA software – [Lukas K.] – struggled with as well when he decided to make his own 3D CAD package, called Dune 3D. Per the documentation for Dune 3D, it’s effectively the solver and workflow from SolveSpace, the Open CASCADE geometry kernel and the user interface from Horizon EDA wrapped up into a single package.

So why not just use FreeCAD or contribute to it? [Lukas]’s main gripes appear to be the issues with the topological naming problem (TNP) in FreeCAD, as well as the modal sketcher that’s limited to 2D, with no constraints in 3D for extrusions. With the recent version 1.1 release it seems to be picking up new features and fixes, and installing it is very easy on Windows with an installer. For Arch there’s an AUR package, and other Linux seems to get a Flatpak if you’re not into building the software yourself.

As for the UI, it’s got a definite MacOS vibe to it, with most of the functionality hidden from the main view. Fortunately some tutorials are available to get you started, but it remains to be seen where Dune 3D lands compared to FreeCAD, OnShape and others. As a sidenote, the name is probably not going to help much when asking Google for answers, courtesy of a certain vaguely well-known book with associated movies and series.

Giving Your KiCad PCB Repository Pretty Pictures

5 Mayo 2024 at 02:00
Screenshot of the GitHub Marketplace action listing, describing the extension

Publishing your boards on GitHub or GitLab is a must, and leads to wonderful outcomes in the hacker world. On their own, however, your board files might have the repo look a bit barren; having a picture or two in the README is the best. Making them yourself takes time – what if you could have it happen automatically? Enter [kicad-render], a GitHub&GitLab integration for rendering your KiCad projects by [linalinn].

This integration makes your board pictures, top and bottom view, generated on every push into the repo – just embed two image links into your README.md. This integration is made possible thanks to the new option in KiCad 8’s kicad-cli – board image generation, and [linalinn]’s code makes KiCad run on GitHub/GitLab servers.

For even more bling, you can enable an option to generate a GIF that rotates your board, in the style of that one [arturo182] demo – in fact, this integration’s GIF code was borrowed from that script! Got a repository with many boards in one? There’s an option you could make work for yourself, too.

All you need to do is to follow a couple of simple steps; [linalinn] has documented both the GitHub and GitLab integration. We’ve recently talked about KiCad integrations in more detail, if you’re wondering what else your repository could be doing!

Reverse Engineering the Quansheng Hardware

23 Abril 2024 at 08:00

In the world of cheap amateur radio transceivers, the Quansheng UV-K5 can’t be beaten for hackability. But pretty much every hack we’ve seen so far focuses on the firmware. What about the hardware?

To answer that question, [mentalDetector] enlisted the help of a few compatriots and vivisected a UV-K5 to find out what makes it tick. The result is a (nearly) complete hardware description of the radio, including schematics, PCB design files, and 3D renders. The radio was a malfunctioning unit that was donated by collaborator [Manuel], who desoldered all the components and measured which ones he could to determine specific values. The parts that resisted his investigations got bundled up along with the stripped PCB to [mentalDetector], who used a NanoVNA to characterize them as well as possible. Documentation was up to collaborator [Ludwich], who also made tweaks to the schematic as it developed.

PCB reverse engineering was pretty intense. The front and back of the PCB — rev 1.4, for those playing along at home — were carefully photographed before getting the sandpaper treatment to reveal the inner two layers. The result was a series of high-resolution photos that were aligned to show which traces connected to which components or vias, which led to the finished schematics.

There are still a few unknown components, mostly capacitors by the look of it, but the bulk of the work has been done, and hats off to the team for that. This should make hardware hacks on the radio much easier, and we’re looking forward to what’ll come from this effort. If you want to check out some of the firmware exploits that have already been accomplished on this radio, check out the Trojan Pong upgrade, or the possibilities of band expansion. We’ve also seen a mixed hardware-firmware upgrade that really shines.

❌
❌