Vista Normal

Hay nuevos artículos disponibles. Pincha para refrescar la página.
Ayer — 30 Junio 2024Hackaday

Apple May Use Electrical Debonding For Battery Replacement

Por: Maya Posch
30 Junio 2024 at 02:00

As a result of the European Union’s push for greater repairability of consumer devices like smartphones, Apple sees itself forced to make the batteries in the iPhone user-replaceable by 2027. Reportedly, this has led Apple to look at using electroadhesion rather than conventional adhesives which require either heat, isopropyl alcohol, violence, or all of the above to release. Although details are scarce, it seems that the general idea would be that the battery is wrapped in metal, which, together with the inside of the metal case, would allow for the creation of a cationic/anionic pair capable of permanent adhesion with the application of a low-voltage DC current.

This is not an entirely wild idea. Tesa has already commercialized it in the electrical debonding form of its Debonding on Demand product. This uses a tape that’s applied to one side of the (metal) surfaces, with a 5 bar pressure being applied for 5 seconds. Afterwards, the two parts can be released again without residue as shown in the above image. This involves applying a 12V DC voltage for 60 seconds, with the two parts afterward removable without force.

Tesa markets this right alongside the pull tab adhesive strips which are currently all the rage in smartphones, with the opinions on pull strips during battery replacement strongly divided. A bottle of IPA is always good to have nearby when a pull tab inevitably snaps off and you have to pry the battery loose. In that regard electroadhesion for debonding would make life significantly easier since the times when batteries were not a structural part of smartphones are unlikely to return no matter how much we might miss them.

We covered electroadhesion previously, as you can make just about anything stick to anything, including biological tissues to graphite and metal, with potentially interesting applications in robotics and medicine.

Building a Hydraulic System With 3D Printed SLA Resin Parts

Por: Maya Posch
29 Junio 2024 at 20:00
Showing off the 3D-printed hydraulics system. (Credit: Indeterminate Design, YouTube)

Hydraulics are incredibly versatile, but due to the pressures at which they operate, they are also rather expensive and not very DIY-friendly. This isn’t to say that you cannot take a fair shot at a halfway usable 3D-printed set of hydraulics, as [Indeterminate Design] demonstrates in a recent video. Although not 100% 3D-printed, it does give a good idea of how far you can push plastic-based additive manufacturing in this field.

Most interesting is the integration of the gear pump, 4-way selector valve, and relief valve into a single structure, which was printed with a resin printer (via the JLC3DP 3D print service). After bolting on the (also 3D printed) clear reservoir and assembling the rest of the structure including the MR63 ball bearings, relief spring valve, and pneumatic fittings it was ready to be tested. The (unloaded) gear pump could pump about 0.32 L/minute, demonstrating its basic functionality.

For the hydraulic cylinder, mostly non-3D printed parts were used, with a brass cylinder forming the main body. During these initial tests, plain water was used, followed by CHF11 hydraulic oil, with a pressure of about 1.3 bar (19 PSI) calculated afterward. This fairly low pressure is suspected to be caused by leaky seals (including the busted shaft seal), but as a basic proof of concept, it provides an interesting foundation for improvements.

Want a primer on hydraulics? We got you. MIT likes 3D printing with hydraulics, too (dead link, but the underlying paper link is still good).

AnteayerHackaday

The SS United States: The Most Important Ocean Liner We May Soon Lose Forever

Por: Maya Posch
27 Junio 2024 at 14:30

Although it’s often said that the era of ocean liners came to an end by the 1950s with the rise of commercial aviation, reality isn’t quite that clear-cut. Coming out of the troubled 1940s arose a new kind of ocean liner, one using cutting-edge materials and propulsion, with hybrid civil and military use as the default, leading to a range of fascinating design decisions. This was the context in which the SS United States was born, with the beating heart of the US’ fastest battle ships, with light-weight aluminium structures and survivability built into every single aspect of its design.

Outpacing the super-fast Iowa-class battleships with whom it shares a lot of DNA due to its lack of heavy armor and triple 16″ turrets, it easily became the fastest ocean liner, setting speed records that took decades to be beaten by other ocean-going vessels, though no ocean liner ever truly did beat it on speed or comfort. Tricked out in the most tasteful non-flammable 1950s art and decorations imaginable, it would still be the fastest and most comfortable way to cross the Atlantic today. Unfortunately ocean liners are no longer considered a way to travel in this era of commercial aviation, leading to the SS United States and kin finding themselves either scrapped, or stuck in limbo.

In the case of the SS United States, so far it has managed to escape the cutting torch, but while in limbo many of its fittings were sold off at auction, and the conservation group which is in possession of the ship is desperately looking for a way to fund the restoration. Most recently, the owner of the pier where the ship is moored in Camden, New Jersey got the ship’s eviction approved by a judge, leading to very tough choices to be made by September.

A Unique Design

WW II-era United States Maritime Commission (MARCOM) poster.
WW II-era United States Maritime Commission (MARCOM) poster.

The designer of the SS United States is William Francis Gibbs, who despite being a self-taught engineer managed to translate his life-long passion for shipbuilding into a range of very notable ships. Many of these were designed at the behest of the United States Maritime Commission (MARCOM), which was created by the Merchant Marine Act of 1936, until it was abolished in 1950. MARCOM’s task was to create a merchant shipbuilding program for hundreds of modern cargo ships that would replace the World War I vintage vessels which formed the bulk of the US Merchant Marine. As a hybrid civil and federal organization, the merchant marine is intended to provide the logistical backbone for the US Navy in case of war and large-scale conflict.

The first major vessel to be commissioned for MARCOM was the SS America, which was an ocean liner commissioned in 1939 and whose career only ended in 1994 when it (then named the American Star) wrecked at the Canary Islands. This came after it had been sold in 1992 to be turned into a five-star hotel in Thailand. Drydocking in 1993 had revealed that despite the advanced age of the vessel, it was still in remarkably good condition.

Interestingly, the last merchant marine vessel to be commissioned by MARCOM was the SS United States, which would be a hybrid civilian passenger liner and military troop transport. Its sibling, the SS America, was in Navy service from 1941 to 1946 when it was renamed the USS West Point (AP-23) and carried over 350,000 troops during the war period, more than any other Navy troopship. Its big sister would thus be required to do all that and much more.

Need For Speed

SS United States colorized promotional B&W photograph. The ship's name and an American flag have been painted in position here as both were missing when this photo was taken during 1952 sea trials.
SS United States colorized promotional B&W photograph. The ship’s name and an American flag have been painted in position here as both were missing when this photo was taken during 1952 sea trials.

William Francis Gibbs’ naval architecture firm – called Gibbs & Cox by 1950 after Daniel H. Cox joined – was tasked to design the SS United States, which was intended to be a display of the best the United States of America had to offer. It would be the largest, fastest ocean liner and thus also the largest and fastest troop and supply carrier for the US Navy.

Courtesy of the major metallurgical advances during WW II, and with the full backing of the US Navy, the design featured a military-style propulsion plant and a heavily compartmentalized design following that of e.g. the Iowa-class battleships. This meant two separate engine rooms and similar levels of redundancy elsewhere, to isolate any flooding and other types of damage. Meanwhile the superstructure was built out of aluminium, making it both very light and heavily corrosion-resistant. The eight US Navy M-type boilers (run at only 54% of capacity) and a four-shaft propeller design took lessons learned with fast US Navy ships to reduce vibrations and cavitation to a minimum. These lessons include e.g. the the five- and four-bladed propeller design also seen used with the Iowa-class battleships with their newer configurations.

Another lessons-learned feature was a top to bottom fire-proofing after the terrible losses of the SS Morro Castle and SS Normandie, with no wood, fabrics or other flammable materials onboard, leading to the use of glass, metal and spun-glass fiber, as well as fireproof fabrics and carpets. This extended to the art pieces that were onboard the ship, as well as the ship’s grand piano which was made from mahogany whose inability to ignite was demonstrated by trying to burn it with a gasoline fire.

The actual maximum speed that the SS United States can reach is still unknown, with it originally having been a military secret. Its first speed trial supposedly saw the vessel hit an astounding 43 knots (80 km/h), though after the ship was retired from the United States Lines (USL) by the 1970s and no longer seen as a naval auxiliary asset, its top speed during the June 10, 1952 trial was revealed to be 38.32 knots (70.97 km/h). In service with USL, its cruising speed was 36 knots, gaining it the Blue Riband and rightfully giving it its place as America’s Flagship.

A Fading Star

The SS United States was withdrawn from passenger service by 1969, in a very unexpected manner. Although the USL was no longer using the vessel, it remained a US Navy reserve vessel until 1978, meaning that it remained sealed off to anyone but US Navy personnel during that period. Once the US Navy no longer deemed the vessel relevant for its needs in 1978, it was sold off, leading to a period of successive owners. Notable was Richard Hadley who had planned to convert it into seagoing time-share condominiums, and auctioned off all the interior fittings in 1984 before his financing collapsed.

In 1992, Fred Mayer wanted to create a new ocean liner to compete with the Queen Elizabeth, leading him to have the ship’s asbestos and other hazardous materials removed in Ukraine, after which the vessel was towed back to Philadelphia in 1996, where it has remained ever since. Two more owners including Norwegian Cruise Line (NCL) briefly came onto the scene, but economic woes scuttled plans to revive it as an active ocean liner. Ultimately NCL sought to sell the vessel off for scrap, which led to the SS United States Conservancy (SSUSC) to take over ownership in 2010 and preserve the ship while seeking ways to restore and redevelop the vessel.

Considering that the running mate of the SS United States (the SS America) was lost only a few years prior, this leaves the SS United States as the only example of a Gibbs ocean liner, and a poignant reminder of what would have been a highlight of the US’s marine prowess. Compared to the United Kingdom’s record here, with the Queen Elizabeth 2 (QE2, active since 1969) now a floating hotel in Dubai and the Queen Mary 2‘s maiden voyage in 2004, the US looks to be rather meager when it comes to preserving its ocean liner legacy.

End Of The Line?

The curator of the Iowa-class USS New Jersey (BB-62, currently fresh out of drydock), Ryan Szimanski, walked over from his museum ship last year to take a look at the SS United States, which is moored literally within viewing distance from his own pride and joy. Through the videos he made, one gains a good understanding of both how stripped the interior of the ship is, but also how amazingly well-conserved the ship is today. Even after decades without drydocking or in-depth maintenance, the ship looks like could slip into a drydock tomorrow and come out like new a year or so later.

At the end of all this, the question remains whether the SS United States deserves it to be preserved. There are many arguments for why this would the case, from its unique history as part of the US Merchant Marine, its relation to the highly successful SS America, it being effectively a sister ship to the four Iowa-class battleships, as well as a strong reminder of the importance of the US Merchant Marine at some point in time. The latter especially is a point which professor Sal Mercogliano (from What’s Going on With Shipping? fame) is rather passionate about.

Currently the SSUSC is in talks with a New York-based real-estate developer about a redevelopment concept, but this was thrown into peril when the owner of the pier suddenly doubled the rent, leading to the eviction by September. Unless something changes for the better soon, the SS United States stands a good chance of soon following the USS Kitty Hawk, USS John F. Kennedy (which nearly became a museum ship) and so many more into the scrapper’s oblivion.

What, one might ask, is truly in the name of the SS United States?

Paul Allen’s Living Computers Museum and Labs to be Auctioned

Por: Maya Posch
26 Junio 2024 at 02:00

After the Living Computers museum in Seattle closed like so many museums and businesses in 2020 with the pandemic, there were many who feared that it might not open again. Four years later this fear has become reality, as the Living Computers: Museum + Labs (LCM+L, for short) entire inventory is being auctioned off. This occurs only 12 years after the museum and associated educational facilities were opened to the public. Along with Allen’s collection at the LCM+L, other items that he had been collecting until his death in 2018 will also be auctioned at Christie’s, for a grand total of 150 items in the Gen One: Innovations from the Paul G. Allen Collection.

In 2022 Allen’s art collection had seen the auction block, but this time it would seem that the hammer has come for this museum. Unique about LCM+L was that it featured vintage computing systems that visitors could interact with and use much like they would have been used back in the day, rather than being merely static display pieces, hence the ‘living computers’ part. Although other vintage computing museums in the US and elsewhere now also allow for such interactive displays, it’s sad to see the only major vintage computing museum in Washington State vanish.

Hopefully the items being auctioned will find loving homes, ideally at other museums and with collectors who aren’t afraid to keep the educational spirit of LCM+L alive.

Thanks to [adistuder] for the tip.

Top image: A roughly 180° panorama of the “conditioned” room of the Living Computer Museum, Seattle, Washington, USA. Taken in 2014. (Credit: Joe Mabel)

How the CD-ROM Lost the Multimedia Dream to the Internet

Por: Maya Posch
25 Junio 2024 at 02:00
High-tech movie guides on CD-ROM; clearly the future had arrived in 1994.
High-tech movie guides on CD-ROM; clearly the future had arrived in 1994.

In the innocent days of the early 90s the future of personal computing still seemed to be wide open, with pundits making various statements regarding tis potential trajectories. To many, the internet and especially the World Wide Web didn’t seem to be of any major significance, as it didn’t have the reach or bandwidth for the Hot New Thingtm in the world of PCs: multimedia. Enter the CD-ROM, which since its introduction in 1985 had brought the tantalizing feature of seemingly near-infinite storage within reach, and became cheap enough for many in the early 90s. In a recent article by [Harry McCracken] he reflects on this era, and how before long it became clear that it was merely a bubble.

Of course, there was a lot of good in CD-ROMs, especially when considering having access to something like Encarta before Wikipedia and broadband internet was a thing. It also enabled software titles to be distributed without the restrictions of floppy disks. We fondly remember installing Windows 95 (without Internet Explorer) off 13 1.44 MB floppies, followed by a few buckets of Microsoft Office floppies. All pray to the computer gods for no sudden unreadable floppy.

Inevitably, there was a lot of shovelware on CD-ROMs, and after the usefulness of getting free AOL floppies (which you could rewrite), the read-only CD-ROMs you got in every magazine and spam mailing were a big disappointment. Although CD-ROMs and DVDs still serve a purpose today, it’s clear that along with the collapse of the Internet Bubble of the late 90s, early 2000s, optical media has found a much happier place. It’s still hard to beat the sheer value of using CD-R(W)s and DVD-/+R(W)s (and BD-Rs) for offline backups, even if for games and multimedia they do not appear to be relevant any more.

If you’re interested in another depiction of this period, it’s somewhere we’ve been before.

Testing Large Language Models for Circuit Board Design Aid

Por: Maya Posch
24 Junio 2024 at 11:00

Beyond bothering large language models (LLMs) with funny questions, there’s the general idea that they can act as supporting tools. Theoretically they should be able to assist with parsing and summarizing documents, while answering questions about e.g. electronic design. To test this assumption, [Duncan Haldane] employed three of the more highly praised LLMs to assist with circuit board design. These LLMs were GPT-4o (OpenAI), Claude 3 Opus (Anthropic) and Gemini 1.5 (Google).

The tasks ranged from ‘stupid questions’, like asking the delay per unit length of a trace on a PCB, to finding parts for a design, to designing an entire circuit. Of these tasks, only the ‘parsing datasheets’ task could be considered to be successful. This involved uploading the datasheet for a component (nRF5340) and asking the LLM to make a symbol and footprint, in this case for the text-centric JITX format but KiCad/Altium should be possible too. This did require a few passes, as there were glitches and omissions in the generated footprint.

When it came to picking components for a design, it’s clear that you’re out of luck here unless you’re trying to create a design that a million others have made before you in exactly the same way. This problem got worse when trying to design a circuit and ultimately spit out a netlist, with the best LLM (Claude 3 Opus) giving nonsensical suggestions for filter designs and mucking up even basic amplifier designs, including by sticking decoupling capacitors and random resistors just about everywhere.

Effectively, as a text searching tool it would seem that LLMs can have some use for engineers who are tired of digging through yet another few hundred pages of poorly formatted and non-indexed PDF datasheets, but you still need to be on your toes with every step of the way, as the output from the LLM will all too often be slightly to hilariously wrong.

TSMC’s Long Path From Round to Square Silicon Wafers

Por: Maya Posch
23 Junio 2024 at 14:00
Crystal of Czochralski-grown silicon.
Crystal of Czochralski-grown silicon.

Most of us will probably have seen semiconductor wafers as they trundle their way through a chip factory, and some of us may have wondered about why they are round. This roundness is an obvious problem when one considers that the chip dies themselves are rectangular, meaning that a significant amount of the dies etched into the wafers end up being incomplete and thus as waste, especially with (expensive) large dies. This is not a notion which has escaped the attention of chip manufacturers like TSMC, with this particular manufacturer apparently currently studying a way to make square substrates a reality.

According to the information provided to Nikkei Asia by people with direct knowledge, currently 510 mm x 515 mm substrates are being trialed which would replace the current standard 12″ (300 mm) round wafers. For massive dies such as NVidia’s H200 (814 mm2), this means that approximately three times as many would fit per wafer. As for when this technology will go into production is unknown, but there exists significant incentive in the current market to make it work.

As for why wafers are round, this is because of how these silicon wafers are produced, using the Czochralski method, named after Polish scientist [Jan Czochralski] who invented the method in 1915. This method results in rod-shaped crystals which are then sliced up into the round wafers we all know and love. Going square is thus not inherently impossible, but it will require updating every step of the process and the manufacturing line to work with this different shape.

Nearly 30 Years of FreeDOS and Looking Ahead to the Future

Por: Maya Posch
23 Junio 2024 at 08:00
Blinky, the friendly FreeDOS mascot.
Blinky, the friendly FreeDOS mascot.

The first version of FreeDOS was released on September 16 of 1994, following Microsoft’s decision to cease development on MS-DOS in favor of Windows. This version 0.01 was still an Alpha release, with 0.1 from 1998 the first Beta and the first stable release (1.0, released on September 3 2006) still a while off. Even so, its main developer [Jim Hall] and the like-minded developers on the FreeDOS team managed to put together a very functional DOS using a shell, kernel and other elements which already partially existed before the FreeDOS (initially PD-DOS, for Public Domain DOS) idea was pitched by [Jim].

Nearly thirty years later, [Jim] reflects on these decades, and the strong uptake of what to many today would seem to be just a version of an antiquated OS. When it comes to embedded and industrial applications, of course, a simple DOS is all you want and need, not to mention for a utility you boot from a USB stick. Within the retro computing community FreeDOS has proven to be a boon as well, allowing for old PCs to use a modern DOS rather than being stuck on a version of MS-DOS from the early 90s.

For FreeDOS’ future, [Jim] is excited to see what other applications people may find for this OS, including as a teaching tool on account of how uncomplicated FreeDOS is. In a world of complicated OSes that no single mortal can comprehend any more, FreeDOS is really quite a breath of fresh air.

Uncovering ChatGPT Usage in Academic Papers Through Excess Vocabulary

Por: Maya Posch
22 Junio 2024 at 20:00
Frequencies of PubMed abstracts containing certain words. Black lines show counterfactual extrapolations from 2021–22 to 2023–24. The first six words are affected by ChatGPT; the last three relate to major events that influenced scientific writing and are shown for comparison. (Credit: Kobak et al., 2024)
Frequencies of PubMed abstracts containing certain words. Black lines show counterfactual extrapolations from 2021–22 to 2023–24. The first six words are affected by ChatGPT; the last three relate to major events that influenced scientific writing and are shown for comparison. (Credit: Kobak et al., 2024)

That students these days love to use ChatGPT for assistance with reports and other writing tasks is hardly a secret, but in academics it’s becoming ever more prevalent as well. This raises the question of whether ChatGPT-assisted academic writings can be distinguished somehow. According to [Dmitry Kobak] and colleagues this is the case, with a strong sign of ChatGPT use being the presence of a lot of flowery excess vocabulary in the text. As detailed in their prepublication paper, the frequency of certain style words is a remarkable change in the used vocabulary of the published works examined.

For their study they looked at over 14 million biomedical abstracts from 2010 to 2024 obtained via PubMed. These abstracts were then analyzed for word usage and frequency, which shows both natural increases in word frequency (e.g. from the SARS-CoV-2 pandemic and Ebola outbreak), as well as massive spikes in excess vocabulary that coincide with the public availability of ChatGPT and similar LLM-based tools.

In total 774 unique excess words were annotated. Here ‘excess’ means ‘outside of the norm’, following the pattern of ‘excess mortality’ where mortality during one period noticeably deviates from patterns established during previous periods. In this regard the bump in words like respiratory are logical, but the surge in style words like intricate and notably would seem to be due to LLMs having a penchant for such flowery, overly dramatized language.

The researchers have made the analysis code available for those interested in giving it a try on another corpus. The main author also addressed the question of whether ChatGPT might be influencing people to write more like an LLM. At this point it’s still an open question of whether people would be more inclined to use ChatGPT-like vocabulary or actively seek to avoid sounding like an LLM.

First Hubble Image Taken in New Single Gyro Pointing Mode

Por: Maya Posch
21 Junio 2024 at 02:00

After Space Shuttle Atlantis’ drive-by repair of the Hubble Space Telescope (HST) in May of 2009, the end of the STS program meant that the space telescope had to fend for itself with no prospect for any further repair missions. The weakest point turned out to be the gyroscopes, with of the original six only three functioning until May 24th of 2024 when one failed and couldn’t be reset any more. To make the most out of the HST’s remaining lifespan, NASA decided to transition again to single-gyroscope operation, with the most recent imaging results showing that this enables HST to return to its science mission.

Although the HST has operated with a reduced number of gyroscopes before, while awaiting its (much delayed) 2009 Servicing Mission 4, this time around it would appear that no such aid is coming. Although HST is still very much functional even after recently celebrating its 34th year in space, there is a lot of debate about whether another servicing mission could be organized, or whether HST will be deorbited in a number of years. Recently people like [Jared Isaacman] have suggested ideas for an STS servicing mission, with [Jared] even offering to pay for the entire servicing mission out of pocket.

While there is an argument to be made that a Crew Dragon is a poor substitute for a Shuttle with its big cargo bay, airlock and robotic arm, it’s promising to see at least that for now HST can do what it does best with few compromises, while we may just see Servicing Mission 5 happening at some point before that last gyro kicks the bucket.

Mapping Litter in the Oceans From Space With Existing Satellites

Por: Maya Posch
20 Junio 2024 at 02:00
Litter-windrow detections in the Mediterranean Sea. (Credit: ESA)
Aerial drone image of a litter windrow in Bay of Biscay, Spain. Windrow width: 1-2 meters. (Credit: ESA)
Aerial drone image of a litter windrow in Bay of Biscay, Spain. Windrow width: 1-2 meters. (Credit: ESA)

Recently ESA published the results of a proof-of-concept study into monitoring marine litter using existing satellites, with promising results for the Mediterranean study area. For the study, six years of historical data from the Sentinel-2 satellite multispectral imaging  cameras were used, involving 300,000 images with a resolution of 10 meters. The focus was on litter windrows as common collections of litter like plastic, wood and other types of marine debris that float on the surface, forming clearly visible lines that can be meters wide and many times as long.

These were processed as explained in the open access paper in Nature Communications by [Andrés Cózar] and colleagues. As marine litter (ML) tends to be overwhelmingly composed of plastic, this eases the detection, as any ML that’s visible from space can generally be assumed to be primarily plastic litter. This was combined with the spectral profile of common plastics, so that other types of floating materials (algae, driftwood, seafoam, etc.) could be filtered out, leaving just the litter.

This revealed many of these short-lived litter windrows, with spot confirmation from ships in the area. Some of the windrows were many kilometers in length, with an average of around 1 km.

Although just a PoC, it nevertheless shows that monitoring such plastic debris from space is quite doable, even without dedicated satellites. As every day tons more plastics make their way into the oceans, this provides us with the means to at least keep track of the scope of the problem. Even if resolving it and the associated microplastics problem is still a far-off dream.

Human Brains Can Tell Deepfake Voices from Real Ones

Por: Maya Posch
19 Junio 2024 at 05:00

Although it’s generally accepted that synthesized voices which mimic real people’s voices (so-called ‘deepfakes’) can be pretty convincing, what does our brain really think of these mimicry attempts? To answer this question, researchers at the University of Zurich put a number of volunteers into fMRI scanners, allowing them to observe how their brains would react to real and a synthesized voices.  The perhaps somewhat surprising finding is that the human brain shows differences in two brain regions depending on whether it’s hearing a real or fake voice, meaning that on some level we are aware of the fact that we are listening to a deepfake.

The detailed findings by [Claudia Roswandowitz] and colleagues are published in Communications Biology. For the study, 25 volunteers were asked to accept or reject the voice samples they heard as being natural or synthesized, as well as perform identity matching with the supposed speaker. The natural voices came from four male (German) speakers, whose voices were also used to train the synthesis model with. Not only did identity matching performance crater with the synthesized voices, the resulting fMRI scans showed very different brain activity depending on whether it was the natural or synthesized voice.

One of these regions was the auditory cortex, which clearly indicates that there were acoustic differences between the natural and fake voice, the other was the nucleus accumbens (NAcc). This part of the basal forebrain is involved in the cognitive processing of e.g. motivation, reward and reinforcement learning, which plays a key role in social, maternal and addictive behavior. Overall, the deepfake voices are characterized by acoustic imperfections, and do not elicit the same sense of recognition (and thus reward sensation) as natural voices do.

Until deepfake voices can be made much better, it would appear that we are still safe, for now.

Astroscale’s ADRAS-J Satellite Takes Up-Close Photo of Discarded Rocket Stage

Por: Maya Posch
18 Junio 2024 at 20:00

Although there is a lot of space in Earth orbit, there are also some seriously big man-made objects in those orbits, some of which have been there for decades. As part of efforts to remove at least some of this debris from orbit, Astroscale’s ADRAS-J (“Active Debris Removal by Astroscale-Japan”) satellite has been partaking in JAXA’s Commercial Removal of Space Debris Demonstration (CRD2). After ADRAS-J was launched by a Rocket Lab Electron rocket on February 18, it’s been moving closer to its target, with June 14th seeing an approach by roughly 50 meters, allowing for an unprecedented photo to be made of the H-2A stage in orbit. This upper stage of a Japanese H-2A rocket originally launched the GOSAT Earth observation satellite into orbit back in 2009.

The challenges with this kind of approach is that the orbital debris does not actively broadcast its location, ergo it requires a combination of on-ground and on-satellite tracking to match the orbital trajectory for a safe approach. Here ADRAS-J uses what is called Model Matching Navigation (MNM), which uses known visual information to compare it with captured images, to use these to estimate the relative distance to the target.

Although the goal of ADRAS-J is only to study the target from as closely as possible, the next phase in the CRD2 program would involve actively deorbiting this upper stage, with phase start projected to commence in 2026.

Thanks to [Stephen Walters] for the tip.

McDonald’s Terminates Its Drive-Through Ordering AI Assistant

Por: Maya Posch
18 Junio 2024 at 08:00

McDonald’s recently announced that it will be scrapping the voice-assistant which it has installed at over 100 of its drive-throughs after a two-year trial run. In the email that was sent to franchises, McDonald’s did say that they are still looking at voice ordering solutions for automated order taking (AOT), but it appears that for now the test was a disappointment. Judging by the many viral videos of customers struggling to place an order through the AOT system, it’s not hard to see why.

This AOT attempt began when in 2019 McDonald’s acquired AI company Apprente to create its McD Tech Labs, only to sell it again to IBM who then got contracted to create the technology for McDonald’s fast-food joints. When launched in 2021, it was expected that McDonald’s drive-through ordering lanes would eventually all be serviced by AOT, with an experience akin to the Alexa and Siri voice assistants that everyone knows and loves (to yell at).

With the demise of this test at McDonald’s, it would seem that the biggest change is likely to be in the wider automation of preparing fast-food instead, with robots doing the burger flipping and freedom frying rather than a human. That said, would you prefer the McD voice assistant when going through a Drive-Thru® over a human voice?

The US Surgeon General’s Case for a Warning Label on Social Media

Por: Maya Posch
18 Junio 2024 at 02:00
Credit: Xinmei Liu

The term ‘Social Media’ may give off a benign vibe, suggesting that it’s a friendly place where everyone is welcome to be themselves, yet reality has borne out that it is anything but. This is the reason why the US Surgeon General [Dr. Vivek H. Murthy] is pleading for a health warning label on social media platforms. Much like with warnings on tobacco products, it’s not expected that such a measure would make social media safe for children and adolescents, but would remind them and their parents about the risks of these platforms.

While this may sound dire for what is at its core about social interactions, there is a growing body of evidence to support the notion that social media can negatively impact mental health. A 2020 systematic review article in Cureus by [Fazida Karim] and colleagues found anxiety and depression to be the most notable negative psychological health outcomes. A 2023 editorial in BMC Psychology by [Ágnes Zsila] and [Marc Eric S. Reyes] concurs with this notion, while contrasting these cons of social media with the pros, such as giving individuals an online community where they feel that they belong.

Ultimately, it’s important to realize that social media isn’t the end-all, be-all of online social interactions. There are still many dedicated forums, IRC channels and newsgroups far away from the prying eyes and social pressure  of social media to act out a personality. Having more awareness of how social interactions affect oneself and/or one’s children is definitely essential, even if we’re unlikely to return to the ‘never give out your real name’ days of  the pre-2000s Internet.

Voyager 1 Once Again Returning Science Data From All Four Instruments

Por: Maya Posch
15 Junio 2024 at 11:00

As humanity’s furthest reach into the Universe so far, the two Voyager spacecraft’s well-being is of utmost importance to many. Although we know that there will be an end to any science mission, the recent near-death experience by Voyager 1 was a shocking event for many. Now it seems that things may have more or less returned to normal, with all four remaining scientific instruments now back online and returning information.

Since the completion of Voyager 1’s primary mission over 43 years ago, five of its instruments (including the cameras) were disabled to cope with its diminishing power reserves, with two more instruments failing. This left the current magnetometer (MAG), charged particle (LECP) and cosmic ray (CRS) instruments, as well as the plasma wave subsystem (PWS). These are now all back in operation based on the returned science data after the Voyager team confirmed previously that they were receiving engineering data again.

With Voyager 1 now mostly back to normal, some housekeeping is necessary: resynchronizing the onboard time, as well as maintenance on the digital tape recorder. This will ensure that this venerable spacecraft will be all ready for its 47th anniversary this fall.

Thanks to [Mark Stevens] for the tip.

Easy Retro 3D Look With Voxel Displacement Renderer

Por: Maya Posch
15 Junio 2024 at 05:00

Voxels are effectively like 3D pixels, and they form an integral part of what is commonly referred to as a ‘retro 3D’ look, with pixelated edges sharp enough to cut your retinas on. The problems with modeling a scene using voxels come in the form of creating the geometry and somehow making a physics engine work with voxels rather than conventional triangular (or quad) meshes.

The same scene in Blender (above) and in the voxel-based renderer (below). (Credit: Daniel Schroeder)
The same scene in Blender (above) and in the voxel-based renderer (below). (Credit: Daniel Schroeder)

The approach demonstrated by [Daniel Schroeder] comes in the form of a Voxel Displacement Renderer implemented in C++ and using the Vulkan API. Best part of it? It only requires standard meshes along with albedo and displacement maps.

These inputs are processed by the C++-based tools, which generate the voxels that should be rendered and their properties, while the GLSL-based shader handles the GPU-based rendering step. The pre-processing steps required make it a good idea to bake these resources rather than try to process it in real-time. With that done, [Daniel]’s demo was able to sustain a solid 100+ FPS on a Radeon RX 5700 XT GPU at 1440p, and 60+ FPS on a Steam Deck OLED.

In a second blog post [Daniel] goes through his motivations for this project, with it originally having been intended as a showpiece for his resume, but he can imagine it being integrated into a game engine.

There are still questions to be resolved, such as how to integrate this technique for in-scene characters and other dynamic elements (i.e. non-static scenery), but in terms of easing voxel-based rendering by supporting a standard mesh-based workflow it’s an intriguing demonstration.

Forsp: A Forth & Lisp Hybrid Lambda Calculus Language

Por: Maya Posch
14 Junio 2024 at 02:00

In the world of lambda calculus programming languages there are many ways to express the terms, which is why we ended up with such an amazing range of programming languages, even if most trace their roots back to ALGOL. Of the more unique (and practical) languages, Lisp and Forth probably range near the top, but what if you were to smudge both together? That’s what [xorvoid] did and it resulted in the gracefully titled Forsp programming language. Unsurprisingly it got a very warm and enthusiastic reception over at Hacker News.

While keeping much of Lisp-isms, the Forth part consists primarily out of it being very small and easy to implement, as demonstrated by the C-based reference implementation. It also features a Forth-like value/operand stack and function application. Also interesting is Forsp using call-by-push-value (CBPV), which is quite different from call-by-value (CBV) and call-by-name (CBN), which may give some advantages if you can wrap your mind around the concept.

Even if practicality is debatable, Forsp is another delightful addition to the list of interesting lambda calculus demonstrations which show that the field is anything but static or boring.

From Nissan ICE Pickup to BEV With Nissan Leaf Heart

Por: Maya Posch
12 Junio 2024 at 05:00
First run of the motor with battery pack still externally connected.

Last year [Jimmy] got a request from a customer ([Dave]) to help convert a 1998 Nissan Frontier pickup into an electric drive vehicle, with a crashed 2019 Nissan Leaf providing the battery and electric motor for the conversion. He has documented the months-long journey with plenty of photos, as well as a series of videos over at the [EVSwap Conversions] YouTube channel. While the idea sounds easy enough, there’s a lot more to it than swapping out the ICE with an electric motor and sticking some batteries to the bottom of the car somewhere with double-sided tape. The pickup truck got effectively stripped down  and gutted, before the 110 kW (150 HP) motor got installed using an adapter plate.

The donor Leaf’s battery pack came in at a decently sized 40 kWh, which should give the converted Nissan Frontier BEV a range of easily 100 miles. This pack was split up into two packs, which got put into a custom aluminium battery box, each mounted on one side of the driveshaft. The charging port got installed on the front of the car, next to the logo, discreetly behind a panel. The front of the car had much of the openings that were needed for the ICE’s radiator sealed up for reduced air friction, along with the new low-friction tires that got installed. Although this converted car still has a radiator, it only needs to assisting cooling the motor stack (including inverter and charger) when driving slowly or charging, making it far less demanding and thus allows for a more sleek front.

As a bonus, the car still has the manual 5-gear shift, just without a clutch, and the pickup bed can now also tilt, albeit with hydraulics (so far). Considering that it started with a decent 1998 pickup and totaled Nissan Leaf, this is among the cleanest conversions we have seen, not to mention a good use of a crashed BEV.

Thanks to [JohnU] for the tip.

❌
❌