Vista Normal

Hay nuevos artículos disponibles. Pincha para refrescar la página.
AnteayerSalida Principal

AI Might Kill Us All (With Carbon Emissions)

4 Julio 2025 at 02:00

So-called artificial intelligence (AI) is all the rage right now between your grandma asking ChatGPT how to code in Python or influencers making videos without having to hire extras, but one growing concern is where the power is going to come from for the data centers. The MIT Technology Review team did a deep dive on what the current situation is and whether AI is going to kill us all (with carbon emissions).

Probably of most interest to you, dear hacker, is how they came up with their numbers. With no agreed upon methods and different companies doing different types of processing there were a number of assumptions baked into their estimates. Given the lack of information for closed-source models, Open Source models were used as the benchmark for energy usage and extrapolated for the industry as a whole. Unsurprisingly, larger models have a larger energy usage footprint.

While data center power usage remained roughly the same from 2005 to 2017 as increases in efficiency offset the increase in online services, data centers doubled their energy consumption by 2023 from those earlier numbers. The power running into those data centers is 48% more carbon intensive than the US average already, and expected to rise as new data centers push for increased fossil fuel usage, like Meta in Louisiana or the X data center found to be using methane generators in violation of the Clean Air Act.

Technology Review did find “researchers estimate that if data centers cut their electricity use by roughly half for just a few hours during the year, it will allow utilities to handle some additional 76 gigawatts of new demand.” This would mean either reallocating requests to servers in other geographic regions or just slowing down responses for the 80-90 hours a year when the grid is at its highest loads.

If you’re interested in just where a lot of the US-based data centers are, check out this map from NREL. Still not sure how these LLMs even work? Here’s an explainer for you.

Adding Automatic Emergency Braking To An RC Car

Por: Lewin Day
2 Julio 2025 at 08:00

Modern RC cars can be pretty darn fast. That’s fun and all, but it also makes it easy to crash them into things. This problem inspired [Narrow Studios] to whip up something to offer a bit of protection.

The concept is simple enough—the RC car just needs some way to detect obstacles and stop before hitting them. The build relies on ultrasonic sensors as rangefinders to spot solid objects in the path of the vehicle. An Arduino Nano is in charge of reading the sensors. When it appears the car is approaching a wall or similar obstacle, it fires off a PWM signal to the car’s motor controller commanding it to brake. The additional hardware is held to the car with a bunch of custom printed brackets.

The setup isn’t perfect; the video notes that if you insist on accelerating quickly when close to a wall, you still have a fair chance of hitting it. That’s largely put down to the refresh time of the sensors and the overall system, which could be improved with further work. Still, if you’re always crashing your RC car into walls or curbs, this kind of thing might appeal to you.

We’ve featured some other great RC projects before, too.

Hackaday Links: June 29, 2025

29 Junio 2025 at 23:00
Hackaday Links Column Banner

In today’s episode of “AI Is Why We Can’t Have Nice Things,” we feature the Hertz Corporation and its new AI-powered rental car damage scanners. Gone are the days when an overworked human in a snappy windbreaker would give your rental return a once-over with the old Mark Ones to make sure you hadn’t messed the car up too badly. Instead, Hertz is fielding up to 100 of these “MRI scanners for cars.” The “damage discovery tool” uses cameras to capture images of the car and compares them to a model that’s apparently been trained on nothing but showroom cars. Redditors who’ve had the displeasure of being subjected to this thing report being charged egregiously high damage fees for non-existent damage. To add insult to injury, if renters want to appeal those charges, they have to argue with a chatbot first, one that offers no path to speaking with a human. While this is likely to be quite a tidy profit center for Hertz, their customers still have a vote here, and backlash will likely lead the company to adjust the model to be a bit more lenient, if not outright scrapping the system.

Have you ever picked up a flashlight and tried to shine it through your hand? You probably have; it’s just a thing you do, like the “double tap” every time you pick up a power drill. We’ve yet to find a flashlight bright enough to sufficiently outline the bones in our palm, although we’ve had some luck looking through the flesh of our fingers. While that’s pretty cool, it’s quite a bit different from shining a light directly through a human head, which was recently accomplished for the first time at the University of Glasgow. The researchers blasted a powerful pulsed laser against the skull of a volunteer with “fair skin and no hair” and managed to pick up a few photons on the other side, despite an attenuation factor of about 1018. We haven’t read the paper yet, so it’s unclear if the researchers controlled for the possibility of the flesh on the volunteer’s skull acting like a light pipe and conducting the light around the skull rather than through it, but if the laser did indeed penetrate the skull and everything within it, it’s pretty cool. Why would you do this, especially when we already have powerful light sources that can easily penetrate the skull and create exquisitely detailed images of the internal structures? Why the hell wouldn’t you?!

TIG welding aluminum is a tough process to master, and just getting to the point where you’ve got a weld you’re not too embarrassed of would be so much easier if you could just watch someone who knows what they’re doing. That’s a tall order, though, as the work area is literally a tiny pool of molten metal no more than a centimeter in diameter that’s bathed in an ultra-bright arc that’s throwing off cornea-destroying UV light. Luckily, Aaron over at 6061.com on YouTube has a fantastic new video featuring up-close and personal shots of him welding up some aluminum coupons. He captured them with a Helios high-speed welding camera, and the detail is fantastic. You can watch the weld pool forming and see the cleaning action of the AC waveform clearly. The shots make it clear exactly where and when you should dip your filler rod into the pool, the effect of moving the torch smoothly and evenly, and how contaminants can find their way into your welds. The shots make it clear what a dynamic environment the weld pool is, and why it’s so hard to control.

And finally, the title may be provocative, but “The Sensual Wrench” is a must-see video for anyone even remotely interested in tools. It’s from the New Mind channel on YouTube, and it covers the complete history of wrenches. Our biggest surprise was learning how relatively recent an invention the wrench is; it didn’t really make an appearance in anything like its modern form until the 1800s. The video covers everything from the first adjustable wrenches, including the classic “monkey” and “Crescent” patterns, through socket wrenches with all their various elaborations, right through to impact wrenches. Check it out and get you ugga-dugga on.

Linear Solar Chargers for Lithium Capacitors

26 Junio 2025 at 20:00

For as versatile and inexpensive as switch-mode power supplies are at all kinds of different tasks, they’re not always the ideal choice for every DC-DC circuit. Although they can do almost any job in this arena, they tend to have high parts counts, higher complexity, and higher cost than some alternatives. [Jasper] set out to test some alternative linear chargers called low dropout regulators (LDOs) for small-scale charging of lithium ion capacitors against those more traditional switch-mode options.

The application here is specifically very small solar cells in outdoor applications, which are charging lithium ion capacitors instead of batteries. These capacitors have a number of benefits over batteries including a higher number of discharge-recharge cycles and a greater tolerance of temperature extremes, so they can be better off in outdoor installations like these. [Jasper]’s findings with using these generally hold that it’s a better value to install a slightly larger solar cell and use the LDO regulator rather than using a smaller cell and a more expensive switch-mode regulator. The key, though, is to size the LDO so that the voltage of the input is very close to the voltage of the output, which will minimize losses.

With unlimited time or money, good design can become less of an issue. In this case, however, saving a few percentage points in efficiency may not be worth the added cost and complexity of a slightly more efficient circuit, especially if the application will be scaled up for mass production. If switched mode really is required for some specific application, though, be sure to design one that’s not terribly noisy.

Hackaday Links: June 22, 2025

22 Junio 2025 at 23:00
Hackaday Links Column Banner

Hold onto your hats, everyone — there’s stunning news afoot. It’s hard to believe, but it looks like over-reliance on chatbots to do your homework can turn your brain into pudding. At least that seems to be the conclusion of a preprint paper out of the MIT Media Lab, which looked at 54 adults between the ages of 18 and 39, who were tasked with writing a series of essays. They divided participants into three groups — one that used ChatGPT to help write the essays, one that was limited to using only Google search, and one that had to do everything the old-fashioned way. They recorded the brain activity of writers using EEG, in order to get an idea of brain engagement with the task. The brain-only group had the greatest engagement, which stayed consistently high throughout the series, while the ChatGPT group had the least. More alarmingly, the engagement for the chatbot group went down even further with each essay written. The ChatGPT group produced essays that were very similar between writers and were judged “soulless” by two English teachers. Go figure.

The most interesting finding, though, was when 18 participants from the chatbot and brain-only groups were asked to rewrite one of their earlier essays, with the added twist that the chatbot group had to do it all by themselves, while the brainiacs got to use ChatGPT. The EEGs showed that the first group struggled with the task, presumably because they failed to form any deep memory of their previous work thanks to over-reliance on ChatGPT. The brain-only folks, however, did well at the task and showed signs of activity across all EEG bands. That fits well with our experience with chatbots, which we use to help retrieve specific facts and figures while writing articles, especially ones we know we’ve seen during our initial scan of the literature but can’t find later.

Does anyone remember Elektro? We sure do, although not from personal experience, since the seven-foot-tall automaton built by Westinghouse for the World’s Fair in New York City in 1939 significantly predates our appearance on the planet. But still, the golden-skinned robot that made its living by walking around, smoking, and cracking wise at the audience thanks to a 78-rpm record player in its capacious chest, really made an impression, enough that it toured the country for the better part of 30 years and made the unforgettable Sex Kittens Go to College in 1960 before fading into obscurity. At some point, the one-of-a-kind robot was rescued from a scrap heap and restored to its former glory, and now resides in the North Central Ohio Industrial Museum in Mansfield, very close to the Westinghouse facility that built it. If you need an excuse to visit North Central Ohio, you could do worse than a visit to see Elektro.

It was with some alarm that we learned this week from Al Williams that mtrek.com 1701 appeared to be down. For those not in the know, mtrek is a Telnet space combat game inspired by the Star Trek franchise, which explains why Al was in such a tizzy about not being able to connect; huge Trek nerd, our Al. Anyway, it appears Al’s worst fears were unfounded, as we were able to connect to mtrek just fine. But in the process of doing so, we stumbled across this collection of Telnet games and demos that’s worth checking out. The mtrek, of course, as well as Telnet versions of chess and backgammon, and an interactive world map that always blows our mind. The site also lists the Telnet GOAT, the Star Wars Asciimation; sadly, that one does seem to be down, at least for us. Sure, you can see it in a web browser, but it’s not the same as watching it in a terminal over Telnet, is it?

And finally, if you’ve got 90 minutes or so to spare, you could do worse than to spend it with our friend Hash as he reverse engineers an automotive ECU. We have to admit that we haven’t indulged yet — it’s on our playlist for this weekend, because we know how to party. But from what Hash tells us, this is the tortured tale of a job that took far, far longer to complete than expected. We have to admit that while we’ll gladly undertake almost any mechanical repair on most vehicles, automotive ECUs and other electronic modules are almost a bridge too far for us, at least in terms of cracking them open to make even simple repairs. Getting access to them for firmware extraction and parameter fiddling sounds like a lot of fun, and we’re looking forward to hearing what Hash has to say about the subject.

Has a Nuke Gone Off? Indicator

Por: Ian Bos
22 Junio 2025 at 20:00
A green box with the answer to if a nuke has gone off with red neon lights

Look out of a window, ask yourself the question, “Has a nuke gone off?”. Maybe, maybe not, and all of us here at Hackaday need to know the answer to these important questions! Introducing the hasanukegoneoff.com Indicator from [bigcrimping] to answer our cries.

An ESP32 running a MicroPython script handles the critical checks from hasanukegoneoff.com for any notification of nuclear mayhem. This will either power the INS-1 neon bulb, indicating “no” or “yes” in the unfortunate case of a blast. Of course, there is also the button required for testing the notification lights; no chance of failure can be left. All of this is fitted onto a custom dual-sided PCB and placed inside a custom 3D-printed enclosure.

Hasanukegoneoff.com’s detection system, covered before here, relies on an HSN-1000L Nuclear Event Detector to check for neutrons coming from the blast zone. [bigcrimping] also provides the project plans for your own blast detector to answer the critical question of “has a nuke gone off” from anywhere other than the website’s Chippenham, England location.

This entire project is open sourced, so keep sure to check out [bigcrimping]’s GitHub for both portions of this project on the detector and receiver. While this project provides some needed dark humor, nukes are still scary and especially so when disarming them with nothing but a hacksaw and testing equipment.

Thanks to [Daniel Gooch] for the tip.

BhangmeterV2 Answers The Question “Has a Nuke Gone Off?”

18 Junio 2025 at 20:00

You might think that a nuclear explosion is not something you need a detector for, but clearly not everyone agrees. [Bigcrimping] has not only built one, the BhangmeterV2, but he has its output publicly posted at hasanukegoneoff.com, in case you can’t go through your day without checking if someone has nuked Wiltshire.

The Bhangmeter is based on an off-the-shelf “nuclear event detector”, the HSN-1000L by Power Device Corporation.

The HSN 1000 Nuclear Event Detector at the heart of the build. We didn’t know this thing existed, never mind that it was still available.

Interfacing to the HSN-1000L is very easy: you give it power, and it gives you a pin that stays HIGH unless it detects the characteristic gamma ray pulse of a nuclear event. The gamma ray pulse occurs at the beginning of a “nuclear event” precedes the EMP by some microseconds, and the blast wave by perhaps many seconds, so the HSN-1000 series seems be aimed at triggering an automatic shutdown that might help preserve electronics in the event of a nuclear exchange.

[Bigcrimping] has wired the HSN-1000L to a Raspberry Pi Pico 2 W to create the BhangmeterV2. In the event of a nuclear explosion, it will log the time the nuclear event detector’s pin goes low, and the JSON log is pushed to the cloud, hopefully to a remote server that won’t be vaporized or bricked-by-EMP along with the BhangmeterV2. Since it is only detecting the gamma ray pulse, the BhangmeterV2 is only sensitive to nuclear events within line-of-sight, which is really not where you want to be relative to a nuclear event. Perhaps V3 will include other detection methods– maybe even a 3D-printed neutrino detector?

If you survive the blast this project is designed to detect, you might need a radiation detector to deal with the fallout. For identifying exactly what radionuclide contamination is present, you might want a gamma-ray spectrometer.

It’s a sad comment on the modern world that this hack feels both cold-war vintage and relevant again today. Thanks to [Tom] for the tip; if you have any projects you want to share, we’d love to hear from you whether they’d help us survive nuclear war or not.

An RC Car Driven with Old 3D Printer Motors

Por: Ian Bos
15 Junio 2025 at 11:00
RC rover/car with red and yellow-sided wheels. Electronics are visible on top of vehicle.

With the newer generation of quick and reliable 3D printers, we find ourselves with the old collecting dust and cobwebs. You might pull it out for an emergency print, that is if it still works… In the scenario of an eternally resting printer (or ones not worth reviving), trying to give new life to the functional parts is a great idea. This is exactly what [MarkMakies] did with a simple RC rover design from an old Makerbot Replicator clone. 

Using a stepper motor to directly drive each wheel, this rover proves its ability to handle a variety of terrain types. Stepper motors are far from the most common way to drive an RC vehicle, but they can certainly give enough power. Controlling these motors is done from a custom protoboard, allowing the use of RC control. Securing all these parts together only requires a couple of 3D printed parts and the rods used to print them. Throw in a drill battery for power, and you can take it nearly anywhere! 

With the vehicle together [MarkMakies] tested to a rocketing 0.6 m/s fully loaded 4WD. Of course, less weight proves more exciting. While [Mark] recognizes some inherent issues with a stepper-driven all-terrain vehicle, we could see some clever uses for the drive system.

Broken down 3D printers are a dime a dozen, so you should try making something similar by checking out [Mark]’s design files! 3D printers are machines of fine-controlled movement so it’s no surprise to find reuse in these projects is fairly common. Just like this nifty DIY camera slider!

Garden Hose Gets Laminar Flow

9 Junio 2025 at 05:00

We aren’t sure if [Joshua Bellamy] is serious that he wants a laminar flow to water his plants, but there are many places where having a smooth and predictable flow of water is useful or even essential. With his 3D printed adapter, you can produce laminar flow from any garden hose.

If you haven’t heard the term before, laminar flow is to water what a laser is to light. The water moves in parallel tracks with minimal mixing and turbulence. Ensuring laminar flow is often critical to precise flow metering, for example.

This isn’t [Joshua]’s first attempt. He has made a nozzle like this before, but it required a lot of assembly (“more fiddly bits than a Swedish flat-pack sofa” according to the post). Depending on the version, you’ll need various bits of extra hardware in addition to the 3D printed parts. Some versions have drop-in nuts and even an LED. Fiberglass insulation at the inlet diffuses turbulence, and some manual work on the output provided better results. When everything is working, the output of the hose should look like a glass rod, as you can see in the video below.

Air can also have laminar or non-laminar flow. Laminar air flow in a laser cutter’s air assist can make a big difference. If you don’t fancy 3D printing, you could save some drinking straws from your last few hundred trips to the local fast food emporium.

3D Printing a Modular Guitar Means It Can Look Like Whatever You Want

Por: Lewin Day
4 Junio 2025 at 08:00

Got some spare filament and looking to build a guitar you can truly call your own? [The 3D Print Zone] has created a modular 3D printable guitar system that lets you easily mix and match different components for the ultimate in customization.

The build is based around a central core, which combines the pickups, bridge, and neck into one solid unit. This is really the heart of the guitar, containing all the pieces that need to be in precise alignment to get those strings vibrating precisely in tune. The core then mounts to a printed outer body via mating slots and rails, which in the main demo is made to look like a Les Paul-style design. This outer body also hosts the volume, tone, and pickup controls. Output from the pickups travels to the controls in the outer body via a set of metallic contacts.

What’s cool about this build is that the sky really is the limit for your creativity. As the video below demonstrates, the main build looks like a Les Paul. But, armed with the right CAD software, you can really make a guitar that looks like whatever you want, while the 3D printer does all the hard work of making it a reality. The files to print the guitar, along with the pickups and other components, are available as kits—but there’s also nothing stopping you from working up your own printed guitar design from scratch, either.

We’ve seen some other great 3D printed guitars before, too.

The Keyboard Sinclair Never Made

3 Junio 2025 at 05:00
ZX Mechtrum Deluxe keyboard close-up

For those of us who’ve spent far too long hammering rubber keys into submission, a glorious solution has arrived. [Lee Smith] designed the ZX Mechtrum Deluxe, the ultimate keyboard upgrade for your beloved ZX Spectrum 48k. Thanks to [morefunmakingit], you can see this build-it-yourself mechanical mod below. It finally brings a proper spacebar and Spectrum-themed Wraith keycaps into your retro life.

The Metrum Deluxe is a full PCB redesign: no reused matrices or clunky membrane adapters here. [Lee Smith] got fed up with people (read: the community, plus one very persistent YouTuber) asking for a better typing experience, so he delivered. Wraith keycaps from AliExpress echo the original token commands and BASIC vibe, without going full collector-crazy. Best of all: the files are open. You can download the case on Printables and order the PCB through JLCPCB. Cherry on top (pun intended): you’ll finally have a spacebar your thumbs can be proud of.

So whether you’re into Frankenstein rigs or just want your Spectrum to stop feeling like an air mattress, check this video out. Build files and link to the keycaps can be found on Youtube, below the video.

Tip: if you foster a secret love for keyboards, don’t miss the Keebin’ with Kristina’s series on all sorts of keyboards.

3D Printing A Capable RC Car

Por: Lewin Day
2 Junio 2025 at 20:00

You can buy all sorts of RC cars off the shelf, but doing so won’t teach you a whole lot. Alternatively, you could follow [TRDB]’s example, and design your own from scratch.

The Lizard, as it is known, is a fun little RC car. It’s got a vaguely Formula 1-inspired aesthetic, and looks fetching with the aid of two-tone 3D printed parts. It’s designed for speed and handling, with a rear-wheel-drive layout and sprung suspension at all four corners to soak up the bumps. The majority of the vehicle is 3D printed in PETG, including the body and the gearbox and differential. However, some suspension components are made in TPU for greater flexibility and resistance to impact. [TRDB] specified commercial off-the-shelf wheels to provide good grip that couldn’t easily be achieved with 3D-printed tires. An ESP32 is responsible for receiving commands from [TRDB’s] custom RC controller running the same microcontroller. It sends commands to the speed controller that runs the Lizard’s brushed DC motor from a 3S lithium-polymer battery.

The final product looks sleek and handles well. It also achieved a GPS-verified top speed of 48 km/h as per [TRDB’s] testing. We’ve seen some other great DIY RC cars over the years, too, like this example that focuses on performance fundamentals. Video after the break.

Making The Codec Communicator From Metal Gear Solid

Por: Lewin Day
1 Junio 2025 at 14:00

[3DSage] likes building replicas of hardware from movies and video games, often with a functional twist. His latest build aimed to bring the Codec from Metal Gear Solid to life.

If you haven’t played the Metal Gear games, the Codec has been modelled somewhat like an advanced walkie talkie at times, but has often been kept off-screen. Thus, [3DSage] had a great deal of creative latitude to create a realistic-feeling Codec device that provided voice communications and some simple imagery display.

The resulting build relies on an RP2040 microcontroller to run the show. It’s paired with an MPU6050 3-axis gyroscope and accelerometer for motion control of the device’s functionality, and features a small LCD screen to mimic the display in the games. A kids walkie-talkie kit was leveraged for audio communication, but kitted out with a better microphone than standard. Power is via a rechargeable 9V battery, which is really a lithium-ion and USB charging board packed into the familiar 9V form factor.

Where the build really shines, though, is the aesthetic. [3DSage] managed to capture the military-like look and feel as well as authentically recreate the graphics from the games on the screen. The simulated noise on the display is particularly charming. Beyond that, the 3D-printed enclosures leverage texture and multi-color printing really well to nail the fit and finish.

Ultimately, the Codec isn’t much more than a glorified walkie talkie. Even still, [3DSage] was able to create an impressive prop that actually does most of what the device can do in game. If you’ve ever coveted a PipBoy or tricorder, this is one project you’ll be able to appreciate.

Adaptive Optics Take Clearest Pictures of the Sun Yet

1 Junio 2025 at 11:00

It’s sometimes easy to forget that the light in the sky is an actual star. With how reliable it is and how busy we tend to be as humans, we can take that incredible fact and stow it away and largely go on with our lives unaffected. But our star is the thing that gives everything on the planet life and energy and is important to understand. Humans don’t have a full understanding of it either; there are several unsolved mysteries in physics which revolve around the sun, the most famous of which is the coronal heating problem. To help further our understanding a number of scientific instruments have been devised to probe deeper into it, and this adaptive optics system just captures some of the most impressive images of it yet.

Adaptive optics systems are installed in terrestrial telescopes to help mitigate the distortion of incoming light caused by Earth’s atmosphere. They generally involve using a reference source to measure these distortions, and then make changes to the way the telescope gathers light, in this case by making rapid, slight changes to the telescope’s mirror. This system has been installed on the Goode Solar Telescope in California and has allowed scientists to view various solar phenomena with unprecedented clarity.

The adaptive optics system here has allowed researchers to improve the resolution from the 1000 km resolution of other solar telescopes down to nearly the theoretical limit of this telescope—63 km. With this kind of resolution the researchers hope that this clarity will help shine some light on some of the sun’s ongoing mysteries. Adaptive optics systems like this aren’t just used on terrestrial telescopes, either. This demonstration shows how the adaptive optics system works on the James Webb Space Telescope.

Thanks to [iliis] for the tip!

Disarming a Nuke… Twice

1 Junio 2025 at 05:00

Since the tail end of World War II, humanity has struggled to deal with its newfound ability to harness the tremendous energy in the nucleus of the atom. Of course there have been some positive developments like nuclear power which can produce tremendous amounts of electricity without the greenhouse gas emissions of fossil fuels. But largely humanity decided to build a tremendous nuclear weapons arsenal instead, which has not only cause general consternation worldwide but caused specific problems for one scientist in particular.

[Steve Weintz] takes us through the tale of [Dr. John C. Clark] who was working with the Atomic Energy Commission in the United States and found himself first at a misfire of a nuclear weapons test in the early 1950s. As the person in charge of the explosive device, it was his responsibility to safely disarm the weapon after it failed to detonate. He would find himself again in this position a year later when a second nuclear device sat on the test pad after the command to detonate it was given. Armed with only a hacksaw and some test equipment he was eventually able to disarm both devices safely.

One note for how treacherous this work actually was, outside of the obvious: although there were safety devices on the bombs to ensure the nuclear explosion would only occur under specific situations, there were also high explosives on the bomb that might have exploded even without triggering the nuclear explosion following it. Nuclear bombs and nuclear power plants aren’t the only things that the atomic age ushered in, though. There have been some other unique developments as well, like the nuclear gardens of the mid 1900s.

Foil Leyden Jar Helps Bring Crookes Tube to Life

23 Mayo 2025 at 08:00
Crookes Tube

It might be too soon to consider the innards of the old CRT monitor at the back of your closet to be something worth putting on display in your home or workshop. For that curio cabinet-worthy appeal, you need to look a bit further back. Say, about 150 years. Yes, that’ll do. A Crookes tube, the original electron beam-forming vacuum tube of glass, invented by Sir William Crookes et al. in the late 19th century, is what you need.

And a Crookes tube is what [Markus Bindhammer] found on AliExpress one day. He felt that piece of historic lab equipment was asking to be put on display in proper fashion. So he set to work crafting a wooden stand for it out of a repurposed candlestick, a nice piece of scrap oak, and some brass feet giving it that antique mad-scientist feel.

After connecting a high voltage generator and switch, the Crookes tube should have been all set, but nothing happened when it was powered up. It turned out that a capacitance issue was preventing the tube from springing to life. Wrapping the cathode end of the tube in aluminum foil, [Markus] formed what is effectively a Leyden jar, and that was the trick that kicked things into action.

As of this writing, there are no longer any Crookes tubes that we could find on AliExpress, so you’ll have to look elsewhere if you’re interested in showing off your own 19th century electron-streaming experiment. Check out the Crookes Radiometer for some more of Sir Williams Crookes’s science inside blown glass.

Jettison Sails for Electric Propulsion

22 Mayo 2025 at 05:00

Although there are some ferries and commercial boats that use a multi-hull design, the most recognizable catamarans by far are those used for sailing. They have a number of advantages over monohull boats including higher stability, shallower draft, more deck space, and often less drag. Of course, these advantages aren’t exclusive to sailboats, and plenty of motorized recreational craft are starting to take advantage of this style as well. It’s also fairly straightforward to remove the sails and add powered locomotion as well, as this electric catamaran demonstrates.

Not only is this catamaran electric, but it’s solar powered as well. With the mast removed, the solar panels can be fitted to a canopy which provides 600 watts of power as well as shade to both passengers. The solar panels charge two 12V 100ah LifePo4 batteries and run a pair of motors. That’s another benefit of using a sailing cat as an electric boat platform: the rudders can be removed and a pair of motors installed without any additional drilling in the hulls, and the boat can be steered with differential thrust, although this boat also makes allowances for pointing the motors in different directions as well. 

In addition to a highly polished electric drivetrain, the former sailboat adds some creature comforts as well, replacing the trampoline with a pair of seats and adding an electric hoist to raise and lower the canopy. As energy density goes up and costs come down for solar panels, more and more watercraft are taking advantage of this style of propulsion as well. In the past we’ve seen solar kayaks, solar houseboats, and custom-built catamarans (instead of conversions) as well.

A Look Inside a Lemon of a Race Car

21 Mayo 2025 at 11:00

Automotive racing is a grueling endeavor, a test of one’s mental and physical prowess to push an engineered masterpiece to its limit. This is all the more true of 24 hour endurance races where teams tag team to get the most laps of a circuit in over a 24 hour period. The format pushes cars and drivers to the very limit. Doing so on a $500 budget as presented by the 24 hours of Lemons makes this all the more impressive!

Of course, racing on a $500 budget is difficult to say the least. All the expected Fédération Internationale de l’Automobile (FIA) safety requirements are still in place, including roll cage, seats and fire extinguisher. However, brakes, wheels, tires and safety equipment are not factored into the cost of the car, which is good because an FIA racing seat can run well in excess of the budget. Despite the name, most races are twelve to sixteen hours across two days, but 24 hour endurance races are run. The very limiting budget and amateur nature of the event has created a large amount of room for teams to get creative with car restorations and race car builds.

The 24 Hours of Le-MINES Team and their 1990 Miata

One such team we had the chance of speaking to goes by the name 24 Hours of Le-Mines. Their build is a wonderful mishmash of custom fabrication and affordable parts. It’s built from a restored 1999 NA Miata complete with rusted frame and all! Power is handled by a rebuilt 302 Mustang engine of indeterminate age.

The stock Miata brakes seem rather small for a race car, but are plenty for a car of its weight. Suspension is an Amazon special because it only has to work for 24 hours. The boot lid (or trunk if you prefer) is held down with what look to be over-sized RC car pins. Nestled next to the PVC pipe inlet pipe is a nitrous oxide canister — we don’t know if it’s functional or for show, but we like it nonetheless. The scrappy look is completed with a portion of the road sign fabricated into a shifter cover.

The team is unsure if the car will end up racing, but odds are if you are reading Hackaday, you care more about the race cars then the actual racing. Regardless, we hope to see this Miata in the future!

This is certainly not the first time we have covered 24 hour endurance engineering, like this solar powered endurance plane.

Hackaday Links: May 18, 2025

18 Mayo 2025 at 23:00
Hackaday Links Column Banner

Saw what you want about the wisdom of keeping a 50-year-old space mission going, but the dozen or so people still tasked with keeping the Voyager mission running are some major studs. That’s our conclusion anyway, after reading about the latest heroics that revived a set of thrusters on Voyager 1 that had been offline for over twenty years. The engineering aspects of this feat are interesting enough, but we’re more interested in the social engineering aspects of this exploit, which The Register goes into a bit. First of all, even though both Voyagers are long past their best-by dates, they are our only interstellar assets, and likely will be for centuries to come, or perhaps forever. Sure, the rigors of space travel and the ravages of time have slowly chipped away at what these machines can so, but while they’re still operating, they’re irreplaceable assets.

That makes the fix to the thruster problem all the more ballsy, since the Voyager team couldn’t be 100% sure about the status of the primary thrusters, which were shut down back in 2004. They thought it might have been that the fuel line heaters were still good, but if they actually had gone bad, trying to switch the primary thrusters back on with frozen fuel lines could have resulted in an explosion when Voyager tried to fire them, likely ending in a loss of the spacecraft. So the decision to try this had to be a difficult one, to say the least. Add in an impending shutdown of the only DSN antenna capable of communicating with the spacecraft and a two-day communications round trip, and the pressure must have been unbearable. But they did it, and Voyager successfully navigated yet another crisis. But what we’re especially excited about is discovering a 2023 documentary about the current Voyager mission team called “It’s Quieter in the Twilight.” We know what we’ll be watching this weekend.

Speaking of space exploration, one thing you don’t want to do is send anything off into space bearing Earth microbes. That would be a Very Bad Thing™, especially for missions designed to look for life anywhere else but here. But, it turns out that just building spacecraft in cleanrooms might not be enough, with the discovery of 26 novel species of bacteria growing in the cleanroom used to assemble a Mars lander. The mission in question was Phoenix, which landed on Mars in 2008 to learn more about the planet’s water. In 2007, while the lander was in the Payload Hazardous Servicing Facility at Kennedy Space Center, biosurveillance teams collected samples from the cleanroom floor. Apparently, it wasn’t very clean, with 215 bacterial strains isolated, 26 of which were novel. What’s more, genomic analysis of the new bugs suggests they have genes that make them especially tough, both in their resistance to decontamination efforts on Earth and in their ability to survive the rigors of life in space. We’re not really sure if these results say more about NASA’s cleanliness than they do about the selective pressure that an extreme environment like a cleanroom exerts on fast-growing organisms like bacteria. Either way, it doesn’t bode well for our planetary protection measures.

Closer to home but more terrifying is video from an earthquake in Myanmar that has to be seen to be believed. And even then, what’s happening in the video is hard to wrap your head around. It’s not your typical stuff-falling-off-the-shelf video; rather, the footage is from an outdoor security camera that shows the ground outside of a gate literally ripping apart during the 7.7 magnitude quake in March. The ground just past the fence settles a bit while moving away from the camera a little, but the real action is the linear motion — easily three meters in about two seconds. The motion leaves the gate and landscaping quivering but largely intact; sadly, the same can’t be said for a power pylon in the distance, which crumples as if it were made from toothpicks.

And finally, “Can it run DOOM?” has become a bit of a meme in our community, a benchmark against which hacking chops can be measured. If it has a microprocessor in it, chances are someone has tried to make it run the classic first-person shooter video game. We’ve covered dozens of these hacks before, everything from a diagnostic ultrasound machine to a custom keyboard keycap, while recent examples tend away from hardware ports to software platforms such as a PDF file, Microsoft Word, and even SQL. Honestly, we’ve lost count of the ways to DOOM, which is where Can It Run Doom? comes in handy. It lists all the unique platforms that hackers have tortured into playing the game, as well as links to source code and any relevant video proof of the exploit. Check it out the next time you get the urge to port DOOM to something cool; you wouldn’t want to go through all the work to find out it’s already been done, would you?

❌
❌