Vista Normal

Hay nuevos artículos disponibles. Pincha para refrescar la página.
Ayer — 2 Abril 2025Salida Principal

Australia’s Steady March Towards Space

Por: Lewin Day
2 Abril 2025 at 14:00

The list of countries to achieve their own successful orbital space launch is a short one, almost as small as the exclusive club of states that possess nuclear weapons. The Soviet Union was first off the rank in 1957, with the United States close behind in 1958, and a gaggle of other aerospace-adept states followed in the 1960s, 1970s, and 1980s. Italy, Iran, North Korea and South Korea have all joined the list since the dawn of the new millennium.

Absent from the list stands Australia. The proud island nation has never stood out as a player in the field of space exploration, despite offering ground station assistance to many missions from other nations over the years. However, the country has continued to inch its way to the top of the atmosphere, establishing its own space agency in 2018. Since then, development has continued apace, and the country’s first orbital launch appears to be just around the corner.

Space, Down Under

The Australian Space Agency has played an important role in supporting domestic space projects, like the ELO2 lunar rover (also known as “Roo-ver”). Credit: ASA

The establishment of the Australian Space Agency (ASA) took place relatively recently. The matter was seen to be long overdue from an OECD member country; by 2008, Australia was the only one left without a national space agency since previous state authorities had been disbanded in 1996. This was despite many facilities across the country contributing to international missions, providing critical radio downlink services and even welcoming JAXA’s Hayabusa2 spacecraft back to Earth.

Eventually, a groundswell grew, pressuring the government to put Australia on the right footing to seize growing opportunities in the space arena. Things came to a head in 2018, when the government established ASA to “support the growth and transformation of Australia’s space industry.”

ASA would serve a somewhat different role compared to organizations like NASA (USA) and ESA (EU). Many space agencies in other nations focus on developing launch vehicles and missions in-house, collaborating with international partners and aerospace companies in turn to do so. However, for ASA, the agency is more focused on supporting and developing the local space industry rather than doing the engineering work of getting to space itself.

Orbital Upstarts

Just because the government isn’t building its own rockets, doesn’t mean that Australia isn’t trying to get to orbit. That goal is the diehard mission of Gilmour Space Technologies. The space startup was founded in 2013, and established its rocketry program in 2015, and has been marching towards orbit ever since. As is often the way, the journey has been challenging, but the payoff of genuine space flight is growing ever closer.

Gilmour Space moved fast, launching its first hybrid rocket back in 2016. The successful suborbital launch proved to be a useful demonstration of the company’s efforts to produce a rocket that used 3D-printed fuel. This early milestone aided the company to secure investment that would support its push to grander launches at greater scale. The company’s next major launch was planned for 2019, but frustration struck—when the larger One Vision rocket suffered a failure just 7 seconds prior to liftoff. Undeterred, the company continued development of a larger rocket, taking on further investment and signing contracts to launch payloads to orbit in the ensuing years.

Gilmour Space has worked hard to develop its hybrid rocket engines in-house. 

With orbital launches and commercial payload deliveries the ultimate goal, it wasn’t enough to just develop a rocket. Working with the Australian government, Gilmour Space established the Bowen Orbital Spaceport in early 2024—a launchpad suitable for the scale of its intended space missions. Located on Queensland’s Gold Coast, it’s just 20 degrees south of the equator—closer than Cape Canaveral, and useful for accessing low- to mid-inclination equatorial orbits. The hope was to gain approval to launch later that year, but thus far, no test flights have taken place. Licensing issues around the launch have meant the company has had to hold back on shooting for orbit.

The rocket with which Gilmour Space intends to get there is called Eris. In Block 1 configuration, it stands 25 meters tall, and is intended to launch payloads up to 300 kg into low-Earth orbits. It’s a three-stage design. It uses four of Gilmour’s Sirius hybrid rocket motors in the first stage, and just one in the second stage. The third stage has a smaller liquid rocket engine of Gilmour’s design, named Phoenix. The rocket was first staged vertically on the launch pad in early 2024, and a later “dress rehearsal” for launch was performed in September, with the rocket fully fueled. However, flight did not take place, as launch permits were still pending from Australia’s Civil Aviation Safety Authority (CASA).

The Eris rocket was first vertically erected on the launchpad in 2024, but progress towards launch has been slow since then. 

After a number of regulatory issues, the company’s first launch of Eris was slated for March 15, 2025. However, that day came and passed, even with CASA approval, as the required approvals were still not available from the Australian Space Agency. Delays have hurt the company’s finances, hampering its ability to raise further funds. As for the rocket itself, hopes for Eris’s performance at this stage remain limited, even if you ask those at Gilmour Space. Earlier this month, founder Adam Gilmour spoke to the Sydney Morning Herald on his expectations for the initial launch. Realistic about the proposition of hitting orbit on the company first attempt, he expects it to take several launches to achieve, with some teething problems to come. “It’s very hard to test an orbital rocket without just flying it,” he told the Herald. “We don’t have high expectations we’ll get to orbit… I’d personally be happy to get off the pad.”

Despite the trepidation, Eris stands as Australia’s closest shot at hitting the bigtime outside the atmosphere. Government approvals and technical hurdles will still need to be overcome, with the Australian Space Agency noting that the company still has licence conditions to meet before a full launch is approved. Still, before the year is out, Australia might join that vaunted list of nations that have leapt beyond the ground to circle the Earth from above. It will be a proud day when that comes to pass.

Malfunctional Timekeeping With The Vetinari Clock

Por: Lewin Day
1 Abril 2025 at 20:00

Lord Vetinari from the Discworld series is known for many things, but perhaps most of all a clock that doesn’t quite keep continuous time. Instead, it ticks away at random increments to infuriate those that perceive it, whilst keeping regular time over the long term. [iracigt] decided to whip up a real world version of this hilarious fictional timepiece.

The clock itself is an off-the-shelf timepiece purchased from Target for the princely sum of $5. However, it’s been deviously modified with an RP2040 microcontroller hidden away inside. The RP2040 is programmed to tick the clock at an average of once per second. But each tick itself is not so exact. Instead, there’s an erraticness to its beat – some ticks are longer, some shorter, in the classic Vetinari style. [iracigt] explains the nitty gritty of how it all works, from creating chaos with Markov chains to interfacing the RP2040 electronically with the cheap quartz clock movement.

If you’ve ever wanted to build one of these amusements yourself, [iracigt’s] writeup is a great place to start. Even better, it was inspired by an earlier post on these very pages! We love to see the community riff on a theme, and we’d love to see yours, too – so keep the tips coming, yeah? Video after the break.

AnteayerSalida Principal

Bringing Achievements To The Nintendo Entertainment System

Por: Lewin Day
1 Abril 2025 at 11:00

Microsoft made gaming history when it developed Achievements and released them with the launch of the Xbox 360. They have since become a key component of gaming culture, which similar systems rolling out to the rest of the consoles and even many PC games. [odelot] has the honor of being the one to bring this functionality to an odd home—the original Nintendo Entertainment System!

It’s actually quite functional, and it’s not as far-fetched as it sounds. What [odelot] created is the NES RetroAchievements (RA) Adapter. It contains a Raspberry Pi Pico which sits in between a cartridge and the console and communicates with the NES itself. The cartridge also contains an LCD screen, a buzzer, and an ESP32 which communicates with the Internet.

When a cartridge is loaded, the RA Adapter identifies the game and queries the RetroAchievements platform for relevant achievements for the title. It then monitors the console’s memory to determine if any of those achievements—such as score, progression, etc.—are met. If and when that happens, the TFT screen on the adapter displays the achievement, and a notification is sent to the RetroAchievements platform to record the event for posterity.

It reminds us of other great feats, like the MJPEG entry into the heart of the Sega Saturn.

Golang On The PS2

Por: Lewin Day
1 Abril 2025 at 05:00

A great many PlayStation 2 games were coded in C++, and there are homebrew SDKs that let you work in C. However, precious little software for the platform was ever created in Golang. [Ricardo] decided this wouldn’t do, and set about making the language work with Sony’s best-selling console of all time. 

Why program a PS2 in Go? Well, it can be easier to work with than some other languages, but also, there’s just value in experimenting in this regard. These days, Go is mostly just used on traditional computery platforms, but [Ricardo] is taking it into new lands with this project.

One of the challenges in getting Go to run on the PS2 is that the language was really built to live under a full operating system, which the PS2 doesn’t really have. However, [Ricardo] got around this by using TinyGo, which is designed for compiling Go on simpler embedded platforms. It basically takes Go code, turns it into an intermediate representation, then compiles binary code suitable for the PS2’s Emotion Engine (which is a MIPS-based CPU).

The specifics of getting it all to work are quite interesting if you fancy challenges like these. [Ricardo] was even able to get to an effective Hello World point and beyond. There’s still lots to do, and no real graphical fun yet, but the project has already passed several key milestones. It recalls us of when we saw Java running on the N64. Meanwhile, if you’re working to get LOLCODE running on the 3DO, don’t hesitate to let us know!

A Music Box Commanded By NFC Tags

Por: Lewin Day
31 Marzo 2025 at 23:00

[Luca Dentella] recently encountered a toy, which was programmed to read different stories aloud based on the figurine placed on top. It inspired him to build an audio device using the same concept, only with music instead of children’s stories.

The NFC Music Player very much does what it says on the tin. Present it with an NFC card, and it will play the relevant music in turn. An ESP32 WROOM-32E lives at the heart of the build, which is hooked up over I2S with a MAX98357A Class D amplifier for audio output. There’s also an SD card slot for storing all the necessary MP3s, and a PN532 NFC reader for reading the flash cards that activate the various songs. Everything is laced up inside a simple 3D-printed enclosure with a 3-watt full range speaker pumping out the tunes.

It’s an easy build, and a fun one at that—there’s something satisfying about tossing a flash card at a box to trigger a song. Files are on Github for the curious. We’ve featured similar projects before, like the Yaydio—a fun NFC music player for kids. Video after the break.

Levitating Lego Generator Runs On Air

Por: Lewin Day
31 Marzo 2025 at 20:00

[Jamie] decided to build a generator, and Lego is his medium of choice. Thus was created a fancy levitating generator that turns a stream of air into electricity. 

The basic concept is simple enough for a generator—magnets moving past coils to generate electricity. Of course, Lego doesn’t offer high-strength magnetic components or copper coils, so this generator is a hybrid build which includes a lot of [Jamie’s] non-Lego parts. Ultimately though, this is fun because of the weird way it’s built. Lego Technic parts make a very crude turbine, but it does the job. The levitation is a particularly nice touch—the build uses magnets to hover the rotor in mid-air to minimize friction to the point where it can free wheel for minutes once run up to speed. The source of power for this contraption is interesting, too. [Jamie] didn’t just go with an air compressor or a simple homebrew soda bottle tank. Instead, he decided to use a couple of gas duster cans to do the job. The demos are pretty fun, with [Jamie] using lots of LEDs and a radio to demonstrate the output.  The one thing we’d like to see more of is proper current/voltage instrumentation—and some measurement of the RPM of this thing!

While few of us will be rushing out to build Lego generators, the video nonetheless has educational value from a mechanical engineering standpoint. Fluids and gases really do make wonderful bearings, as we’ve discussed before. Video after the break.

Designing a Portable Mac Mini

Por: Lewin Day
26 Marzo 2025 at 05:00

When Apple first launched the Macintosh, it created a new sort of “Lunchbox” form factor that was relatively portable and very, very cool. Reminiscent of that is this neat portable Macintosh Mini, created by [Scott Yu-Jan].

[Scott] has created something along these lines before—putting an iPad dock on top of a Macintosh Studio to create a look vaguely reminiscent of the very first Macintosh computers. However, that build wasn’t portable—it wasn’t practical to build such a thing around the Macintosh Studio. In contrast, the Mac Mini is a lithe, lightweight thing that barely sups power—it’s much more suitable for a “luggable” computer.

The build relies on a 3D printed enclosure that wraps around the Mac Mini like a glove. Inside, there’s a chunky 20,800 mAh power bank with enough juice to run the computer for over three hours. Just like the original Mac, there’s a handle on top, too. The build’s main screen is actually an iPad Mini, hooked up to the Mac Mini. If you want to use it separately, it can be popped out just by pushing it via a cutout in the bottom of the enclosure.

[Scott] notes that it’s cool, but not exactly practical—it weighs seven pounds, mostly due to the weight of the heavy power bank. We’ve featured [Scott’s] stylish builds before, too, like this nice iPhone dock.

LED Filaments Become Attractive Time Piece

Por: Lewin Day
25 Marzo 2025 at 20:00

There are a million ways to use LEDs to make a clock. [sjm4306] chose to go a relatively conventional route, making something that approximates a traditional analog timepiece. However, he did it using LED filaments to create a striking and unique design. Thus the name—FilamenTIME!

LED filaments are still relatively new on the scene. They’re basically a bunch of tiny LCDs mounted in a single package to create a single “filament” of light that appears continuous. It’s great if you want to create a bar of light without messing around with populating tons of parts and having to figure out diffusion on your own.

[sjm4306] used them to create glowing bar elements in a clock for telling the time. The outer ring contains 60 filaments for the 60 minutes in an hour, while the inner ring contains 12 filaments to denote the hours themselves. To handle so many LEDs, there are 9 shift registers on board. They’re driven by an ATmega328P which runs the show, with a DS3232MZ real-time clock onboard for keeping time.  As you might imagine, creating such a large circular clock required a large PCB—roughly a square foot in size. It doesn’t come cheap, though [sjm4306] was lucky enough to have sponsorship to cover the build. [sjm4306] is still working on the firmware, and hopes to build a smaller, more compact version, which should cut costs compared to the large single board.

It’s a neat clock, and we’d know, having seen many a timepiece around these parts. Video after the break.

Metal Detector Built With Smartphone Interface

Por: Lewin Day
25 Marzo 2025 at 08:00

If you think of a metal detector, you’re probably thinking of a fairly simple device with a big coil and a piercing whine coming from a tinny speaker. [mircemk] has built a more modern adaptation. It’s a metal detector you can use with your smartphone instead.

The metal detector part of the project is fairly straightforward as far as these things go. It uses the pulse induction technique, where short pulses are fired through a coil to generate a magnetic field. Once the pulse ends, the coil is used to detect the decaying field as it spreads out. The field normally fades away in a set period of time. However, if there is metal in the vicinity, the time to decay changes, and by measuring this, it’s possible to detect the presence of metal.

In this build, an ESP32 is in charge of the show, generating the necessary pulses and detecting the resulting field. It’s paired with the usual support circuitry—an op-amp and a few transistors to drive the coil appropriately, and the usual smattering of passives. The ESP32 then picks up the signal from the coil and processes it, passing the results to a smartphone via Bluetooth.

The build is actually based on a design by [Neco Desarrollo], who presents more background and other variants for the curious. We’ve featured plenty of [mircemk]’s projects before, like this neat proximity sensor build.

Glow In The Dark PCBs Are Pretty Cool

Por: Lewin Day
25 Marzo 2025 at 02:00

What if circuit boards could glow in the dark? It’s a fun question, and one [Botmatrix] sought to answer when approached by manufacturer PCBWay to run a project together. It turns out that it’s quite possible to make glowing PCBs, with attractive results. (Video after the break.)

Specifically, PCBWay has developed a workable glow-in-the-dark silkscreen material that can be applied to printed circuit boards. As a commercial board house, PCBWay hasn’t rushed to explain how precisely they pulled off this feat, but we don’t imagine that it involved anything more than adding some glow-in-the-dark powder to their usual silkscreen ink, but we can only speculate.

On [Botmatrix]’s end, his video steps through some neat testing of the performance of the boards. They’re tested using sensors to determine how well they glow over time.

It might seem like a visual gimmick, and to an extent, it’s just a bit of fun. But still, [Botmatrix] notes that it could have some practical applications too. For example, glow-in-the-dark silkscreen could be used to highlight specific test points on a board or similar, which could be instantly revealed with the use of a UV flashlight. It’s an edge case, but a compelling one. It’s also likely to be very fun for creating visually reactive conference badges or in other applications where the PCB plays a major cosmetic role.

[Botmatrix] says these are potentially the first commercially-available glow-in-the-dark printed PCBs. We love glow in the dark stuff; we’ve even explored how to make your own glowing material before, too. .

 

 

 

 

PPS Is The Hottest USB-C Feature You Didn’t Know About

Por: Lewin Day
24 Marzo 2025 at 23:00

USB Power Delivery is widely considered to be a good thing. It’s become relatively standard, and is a popular way for makers to easily power their projects at a number of specific, useful voltages. However, what you may not know is that it’s possible to get much more variable voltages out of some USB chargers out there. As [GreatScott!] explains, you’ll want to meet USB-C PPS.

PPS stands for Programmable Power Supply. It’s a method by which a USB-C device can request variable voltage and current delivery on demand. Unlike the Power Delivery standard, you’re not limited to set voltages at tiers of 5V, 9V, 15V and 20V. You can have your device request the exact voltage it wants, right from the charger.  Commercially, it’s most typically used to allow smartphones to charge as fast as possible by getting the optimum voltage to plumb into the battery. However, with the right techniques, you can use PPS to get a charger to output whatever voltage you want, from 3.3 V to 21 V, for your own nefarious purposes. You can choose a voltage in 20 mV increments, and even set a current limit in 50 mA increments. Don’t go mad with power, now.

However, there’s a hitch. Unlike USB PD, there isn’t yet a whole ecosystem of $2 PPS breakout boards ready to gloop into your own little projects. As [GreatScott!] suggests, if you want to use PPS, you might want to take a look at the AP33772S IC. It’s a USB PD3.1 Sink Controller. You can command it over I2C to ask for the voltage and current you want. If that’s too hard, though, [CentyLab] has a solution on Tindie to get you going faster. It’s also got some exciting additional functionality—like USB-C AVS support. It offers higher voltage and more power, albeit with less resolution, but chargers with this functionality are quite obscure at this stage.

We’ve actually touched on PPS capability before in our exploration of the magic that is USB-C Power Delivery. Video after the break.

[Thanks to Keith Olson for the tip!]

Mural: The Plotter That Draws On Walls

Por: Lewin Day
24 Marzo 2025 at 20:00

Let’s say you’ve got a big bare wall in your home, and you want some art  on it. You could hang a poster or a framed artwork, or you could learn to paint a mural yourself. Or, like [Nik Ivanov], you could build a plotter called Mural, and get it to draw something on the wall for you. 

The build is straightforward enough. It uses a moving carriage suspended from toothed belts attached to two points up high on the wall. Stepper motors built into the carriage reel the belts in and out to move it up and down the wall, and from side to side. In this case, [Nik] selected a pair of NEMA 17 steppers to do the job. They’re commanded by a NodeMCU ESP32, paired with TMC2209 stepper motor drivers. The carriage also includes a pen lifter, which relies on a MG90s servo to lift the drawing implement away from the wall.

The build is quite capable, able to recreate SVG vector graphics quite accurately, without obvious skew or distortion. [Nik] has been using the plotter with washable Crayola markers, so he can print on the wall time and again without leaving permanent marks. It’s a great way to decorate—over and over again—on a budget. Total estimated cost is under $100, according to [Nik].

We’ve featured some neat projects along these lines before, too. Video after the break.

A Cute Handheld Gaming Device That You Can Build In An Altoids Tin

Por: Lewin Day
22 Marzo 2025 at 05:00

The MintyPi was a popular project that put a Raspberry Pi inside an Altoids tin to make a pocketable gaming handheld. Unfortunately, it’s not the easiest build to replicate anymore, but [jackw01] was still a fan of the format. Thus was born the Pi Tin—a clamshell handheld for portable fun!

Neat, huh? More pocket-sized than the Game Boy Pocket.

The build is based around the Raspberry Pi Zero 2W, which packs more power than the original Pi Zero into the same compact form factor. It’s combined with a 320 x 240 TFT LCD screen and a 2000 mAh lithium-polymer battery which provides power on the go.

There are also a pair of custom PCBs used to lace everything together, including the action buttons, D-pad, and power management hardware. Depending on your tastes, you have two main enclosure options. You can use the neat 3D printed clamshell seen here in beautiful teal, or you can go with the classic Altoids tin build—just be careful when you’re cutting it to suit! Files can be found on GitHub for the curious.

We love a good handheld project around these parts; it’s particularly awesome how much gaming you can fit in your pocket given the magic of the Raspberry Pi and modern emulation. If you’re cooking up your own little retro rig, don’t hesitate to let us know!

Turning a Kombucha Bottle Into a Plasma Tube

Por: Lewin Day
21 Marzo 2025 at 20:00

Kombucha! It’s a delicious fermented beverage that is kind to your digestive system and often sold in glass bottles. You don’t just have to use those bottles for healthy drinks, though. As [Simranjit Singh] demonstrates, you can also use them to create your very own plasma tube.

[Simranjit’s] build begins with a nice large 1.4-liter kombucha bottle from the Synergy brand. To make the plasma tube nicely symmetrical, the bottle had its original spout cut off cleanly with a hot wire, with the end then sealed with a glass cap. Electrodes were installed in each end of the tube by carefully drilling out the glass and installing small bolts. They were sealed in place with epoxy laced with aluminium oxide in order to improve the dielectric strength and aid the performance of the chamber. A vacuum chamber was then used to evacuate air from inside the chamber. Once built, [Simranjit] tested the bottle with high voltage supplied from a flyback transformer, with long purple arcs flowing freely through the chamber.

A plasma tube may not be particularly useful beyond educational purposes, but it does look very cool. We do enjoy a nice high-voltage project around these parts, after all.

Aluminum Business Cards Make Viable PCB Stencils

Por: Lewin Day
21 Marzo 2025 at 11:00

[Mikey Sklar] had a problem—namely, running low on the brass material typically used for making PCB stencils. Thankfully, a replacement material was not hard to find. It turns out you can use aluminum business card blanks to make viable PCB stencils.

Why business card blanks? They’re cheap, for a start—maybe 15 cents each in quantity. They’re also the right thickness, at just 0.8 mm, and they’re flat, unlike rolled materials that can tend to flip up when you’re trying to spread paste. They’re only good for small PCBs, of course, but for many applications, they’ll do just fine.

To cut these, you’ll probably want a laser cutter. [Mikey] was duly equipped in that regard already, which helped. Using a 20 watt fiber laser at a power of 80%, he was able to get nice accurate cuts for the stencils. Thanks to the small size of the PCBs in question, the stencils for three PCBs could be crammed on to a single card.

If you’re not happy with your existing PCB stencil material, you might like to try these aluminium blanks on for size. We’ve covered other stenciling topics before, too.

“Glasses” That Transcribe Text To Audio

Por: Lewin Day
19 Marzo 2025 at 08:00

Glasses for the blind might sound like an odd idea, given the traditional purpose of glasses and the issue of vision impairment. However, eighth-grade student [Akhil Nagori] built these glasses with an alternate purpose in mind. They’re not really for seeing. Instead, they’re outfitted with hardware to capture text and read it aloud.

Yes, we’re talking about real-time text-to-audio transcription, built into a head-worn format. The hardware is pretty straightforward: a Raspberry Pi Zero 2W runs off a battery and is outfitted with the usual first-party camera. The camera is mounted on a set of eyeglass frames so that it points at whatever the wearer might be “looking” at. At the push of a button, the camera captures an image, and then passes it to an API which does the optical character recognition. The text can then be passed to a speech synthesizer so it can be read aloud to the wearer.

It’s funny to think about how advanced this project really is. Jump back to the dawn of the microcomputer era, and such a device would have been a total flight of fancy—something a researcher might make a PhD and career out of. Indeed, OCR and speech synthesis alone were challenge enough. Today, you can stand on the shoulders of giants and include such mighty capability in a homebrewed device that cost less than $50 to assemble. It’s a neat project, too, and one that we’re sure taught [Akhil] many valuable skills along the way.

Speeding Up Your Projects With Direct Memory Access

Por: Lewin Day
19 Marzo 2025 at 02:00

Here’s the thing about coding. When you’re working on embedded projects, it’s quite easy to run into hardware limitations, and quite suddenly, too. You find yourself desperately trying to find a way to speed things up, only… there are no clock cycles to spare. It’s at this point that you might reach for the magic of direct memory access (DMA). [Larry] is here to advocate for its use.

DMA isn’t just for the embedded world; it was once a big deal on computers, too. It’s just rarer these days due to security concerns and all that. Whichever platform you’re on, though, it’s a valuable tool to have in your arsenal. As [Larry] explains, DMA is a great way to move data from memory location to memory location, or from memory to peripherals and back, without involving the CPU. Basically, a special subsystem handles trucking data from A to B while the CPU gets on with whatever other calculations it had to do. It’s often a little more complicated in practice, but that’s what [Larry] takes pleasure in explaining.

Indeed, back before I was a Hackaday writer, I was no stranger to DMA techniques myself—and I got my project published here! I put it to good use in speeding up an LCD library for the Arduino Due. It was the perfect application for DMA—my main code could handle updating the graphics buffer as needed, while the DMA subsystem handled trucking the buffer out to the LCD quicksmart.

If you’re struggling with updating a screen or LED strings, or you need to do something fancy with sound, DMA might just be the ticket. Meanwhile, if you’ve got your own speedy DMA tricks up your sleeve, don’t hesitate to let us know!

A Foot Pedal To Supplement Your Keyboard

Por: Lewin Day
18 Marzo 2025 at 20:00

It’s 2025, and you’re still probably pressing modifier keys on your keyboard like a… regular person. But it doesn’t have to be this way! You could use foot pedals instead, as [Jan Herman] demonstrates.

Now, if you’re a diehard embedded engineer, you might be contemplating your favorite USB HID interface chip and how best to whip up a custom PCB for the job. But it doesn’t have to be that complicated! Instead, [Jan] goes for an old school hack—he simply ripped the guts out of an cheap USB keyboard. From there, he wired up a few of the matrix pads to 3.5 mm jack connectors, and put the whole lot in a little metal project box. Then, he hooked up a few foot pedal switches with 3.5 mm plugs to complete the project.

[Jan] has it set up so he can plug foot pedals in to whichever keys he needs at a given moment. For example, he can plug a foot pedal in to act as SPACE, ESC, CTRL, ENTER, SHIFT, ALT, or left or right arrow. It’s a neat way to make the project quickly reconfigurable for different productivity tasks. Plus, you can see what each pedal does at a glance, just based on how it’s plugged in.

It’s not an advanced hack, but it’s a satisfying one. We’ve seen some other great builds in this space before, too. If you’re cooking up your own keyboard productivity hacks, don’t hesitate to let us know!

DIY Your Own Red Light Therapy Gear

Por: Lewin Day
18 Marzo 2025 at 08:00

There are all kinds of expensive beauty treatments on the market — various creams, zappy lasers, and fine mists of heavily-refined chemicals. For [Ruth Amos], a $78,000 LED bed had caught her eye, and she wondered if she could recreate the same functionality on the cheap.

The concept behind [Ruth]’s build is simple enough. Rather than buy a crazy-expensive off-the-shelf beauty product, she decided to just buy equivalent functional components: a bunch of cheap red LEDs. Then, all she had to do was build these into a facemask and loungewear set to get the same supposed skin improving benefits at much lower cost.

[Ruth] started her build with a welding mask, inside which she fitted red LED strips of the correct wavelength for beneficial skin effects. She then did the same with an over-sized tracksuit, lacing it with an array of LED strips to cover as much of the body as possible. While it’s unlikely she was able to achieve the same sort of total body coverage as a full-body red light bed, nor was it particularly comfortable—her design cost a lot less—on the order of $100 or so.

Of course, you might question the light therapy itself. We’re not qualified to say whether or not red LEDs will give you better skin, but it’s not the first time we’ve seen a DIY attempt at light therapy.

❌
❌