Vista Normal

Hay nuevos artículos disponibles. Pincha para refrescar la página.
Hoy — 15 Abril 2025Salida Principal

Shine On You Crazy Diamond Quantum Magnetic Sensor

15 Abril 2025 at 11:00

We’re probably all familiar with the Hall Effect, at least to the extent that it can be used to make solid-state sensors for magnetic fields. It’s a cool bit of applied physics, but there are other ways to sense magnetic fields, including leveraging the weird world of quantum physics with this diamond, laser, and microwave open-source sensor.

Having never heard of quantum sensors before, we took the plunge and read up on the topic using some of the material provided by [Mark C] and his colleagues at Quantum Village. The gist of it seems to be that certain lab-grown diamonds can be manufactured with impurities such as nitrogen, which disrupt the normally very orderly lattice of carbon atoms and create a “nitrogen vacancy,” small pockets within the diamond with extra electrons. Shining a green laser on N-V diamonds can stimulate those electrons to jump up to higher energy states, releasing red light when they return to the ground state. Turning this into a sensor involves sweeping the N-V diamond with microwave energy in the presence of a magnetic field, which modifies which spin states of the electrons and hence how much red light is emitted.

Building a practical version of this quantum sensor isn’t as difficult as it sounds. The trickiest part seems to be building the diamond assembly, which has the N-V diamond — about the size of a grain of sand and actually not that expensive — potted in clear epoxy along with a loop of copper wire for the microwave antenna, a photodiode, and a small fleck of red filter material. The electronics primarily consist of an ADF4531 phase-locked loop RF signal generator and a 40-dB RF amplifier to generate the microwave signals, a green laser diode module, and an ESP32 dev board.

All the design files and firmware have been open-sourced, and everything about the build seems quite approachable. The write-up emphasizes Quantum Village’s desire to make this quantum technology’s “Apple II moment,” which we heartily endorse. We’ve seen N-V sensors detailed before, but this project might make it easier to play with quantum physics at home.

Ayer — 14 Abril 2025Salida Principal

Hackaday Links: April 13, 2025

13 Abril 2025 at 23:00
Hackaday Links Column Banner

It’s been a while since we’ve dunked on an autonomous taxi foul-up, mainly because it seemed for a while there that most of the companies field testing driverless ride-sharing services had either ceased operation or curtailed them significantly. But that appears not to be the case after a Waymo robotaxi got stuck in a Chick-fil-A drive-through. The incident occurred at the chicken giant’s Santa Monica, California location at about 9:30 at night, when the autonomous Jaguar got stuck after dropping off a passenger in the parking lot. The car apparently tried to use the drive-through lane to execute a multi-point turn but ended up across the entrance, blocking other vehicles seeking their late-evening chicken fix. The drive-through-only restaurant ended up closing for a short time while Waymo figured out how to get the vehicle moving again.

To be fair, drive-through lanes are challenging even for experienced drivers. Lanes are often narrow, curve radii are sometimes tighter than a large vehicle can negotiate smoothly, and the task-switching involved with transitioning from driver to customer can lead to mistakes. Drive-throughs almost seem engineered to make tempers flare, especially at restaurants where hangry drivers are likely to act out at the slightest delay. This is probably doubly so when drivers are stuck behind a driverless car, completely eliminating even the minimal decency that would likely be extended to a human driver who got themselves in a pickle. If people are willing to honk at and curse out the proverbial little old lady from Pasadena, they’re very unlikely to cooperate with a robotaxi and give it the room it needs to maneuver out of a tight spot. Perhaps that argues for a change in programming that accounts for real-world driving experiences as well as the letter of the law.

The big news from space this week was the private Fram2 mission, which took an all-civilian crew on the world’s first crewed polar flight. The four-person crew took off from Florida in a SpaceX Crew Dragon and rather than heading east towards Africa, took off due north and entered a retrograde orbit at 90° inclination, beating the previous record of 65° inclination by Valentina Tereshkova aboard Vostok 6 back in 1963. The Fram2 team managed a couple of other firsts, from the first medical X-rays taken in space to the first amateur radio contacts made from the Dragon.

It’s been a while, but Bill “The Engineer Guy” Hammack is back with a new video extolling the wonders of plastic soda bottles. If you think that’s a subject too mundane to hold your interest, then you’ve never seen Bill at work. The amount of engineering that goes into creating a container that can stand up to its pressurized content while being able to be handled both by automation machines at the bottling plant and by thirsty consumers is a lesson in design brilliance. Bill explains the whole blow-molding process, amazingly using what looks like an actual Coca-Cola production mold. We would have thought such IP would be fiercely protected, but such is Bill’s clout, we guess. The video is also a little trip down memory lane for some of us, as Bill shows off both the two-piece 2-liter bottles that used to grace store shelves and the ponderous glass versions that predated those. Also interesting is the look at the differences between hot-fill bottles and soda bottles, which we never appreciated before.

And finally, if you’ve ever been confused by which logical fallacy is clouding your thinking, why not turn to the most famous fictional logician of all time to clarify things? “Star Trek Logical Reasoning” is a YouTube series by CHDanhauser that uses clips from the Star Trek animated series to illustrate nearly 70 logical fallacies. Each video is quite short, with most featuring Commander Spock eavesdropping on the conversations of his less-logical shipmates and pointing out the flaws in their logic. Luckily, the 23rd century seems to have no equivalent of human(oid) resources, because Spock’s logical interventions are somewhat toxic by today’s standards, but that’s a small price to pay for getting your logical ducks in a row.

AnteayerSalida Principal

Satisfy Your High-Voltage Urges with This Printable Flyback Transformer

13 Abril 2025 at 14:00

Sick of raiding old TVs and CRT monitors for flyback transformers to feed your high-voltage addiction? Never fear; if you’re careful, a 3D-printed flyback might be just the thing you’re looking for.

To be fair, it’s pretty easy to come by new flyback transformers, so building your own isn’t strictly necessary. But [SciTubeHD] was in the market for a particularly large flyback, in a good-natured effort to displace [Jay Bowles] from his lofty perch atop the flyback heap. And it’s also true that this project isn’t entirely 3D-printed, as the split core of the transformer was sourced commercially. The secondary coil, though, was where most of the effort went, with a secondary form made from multiple snap-together discs epoxied together for good measure. The secondary has about a kilometer of 30-gauge magnet wire while the primary holds just ten turns of 8-gauge wire covered with silicone high-voltage insulation.

To decrease the likelihood of arcing, the transformer was placed in a plastic container filled with enough mineral oil liquid dielectric to cover the secondary. After degassing in a vacuum chamber for a day, [SciTubeHD] hooked the primary to a couple of different but equally formidable-looking full-bridge inverters for testing. The coil was capable of some pretty spicy arcs — [SciTubeHD] measured 20 amps draw at 35 volts AC input, so this thing isn’t to be trifled with. STL files for the core parts are coming up soon; we trust schematics for the power supply will be available, too.

Brush Up on Your Trade Craft With This Tiny FM Bug

11 Abril 2025 at 08:00

Would-be spooks and spies, take note: this one-transistor FM transmitter is a circuit you might want to keep in mind for your bugging needs. True, field agents aren’t likely to need to build their own equipment, but how cool a spy would you be if you could?

Luckily, you won’t need too many parts to recreate [Ciprian (YO6DXE)]’s project, most of which could be found in a decently stocked junk bin, or even harvested from e-waste. On the downside, the circuit is pretty fussy, with even minor component value changes causing a major change in center frequency. [Ciprian] had to do a lot of fiddling to get the frequency in the FM band, particularly with the inductor in the LC tank circuit. Even dropping battery voltage shifted the frequency significantly, which required a zener diode to address.

[Ciprian] ran a few tests and managed to get solid copy out to 80 meters range, which is pretty impressive for such a limited circuit. The harmonics, which extend up into the ham bands and possibly beyond, are a bit of a problem; while those could be addressed with a low-pass filter, in practical terms, the power of this little fellow is probably low enough to keep you from getting into serious trouble. Still, it’s best not to push your luck.

While you’re trying your hand at one-transistor circuits, you might want to try [Ciprian]’s one-transistor CW transceiver next.

Making Liquid Oxygen: Far From Easy but Worth the Effort

10 Abril 2025 at 05:00

Normally, videos over at The Signal Path channel on YouTube have a certain vibe, namely teardowns and deep dives into high-end test equipment for the microwave realm. And while we always love to see that kind of content, this hop into the world of cryogenics and liquid oxygen production shows that [Shahriar] has other interests, too.

Of course, to make liquid oxygen, one must first have oxygen. While it would be easy enough to get a tank of the stuff from a gas supplier, where’s the fun in that? So [Shahriar] started his quest with a cheap-ish off-the-shelf oxygen concentrator, one that uses the pressure-swing adsorption cycle we saw used to great effect with DIY O2 concentrators in the early days of the pandemic. Although analysis of the machine’s output revealed it wasn’t quite as capable as advertised, it still put out enough reasonably pure oxygen for the job at hand.

The next step in making liquid oxygen is cooling it, and for that job [Shahriar] turned to the cryocooler from a superconducting RF filter, a toy we’re keen to see more about in the future. For now, he was able to harvest the Stirling-cycle cryocooler and rig it up in a test stand with ample forced-air cooling for the heat rejection end and a manifold to supply a constant flow of oxygen from the concentrator. Strategically placed diodes were used to monitor the temperature at the cold end, a technique we can’t recall seeing before. Once powered up, the cryocooler got down to the 77 Kelvin range quite quickly, and within an hour, [Shahriar] had at least a hundred milliliters of lovely pale blue fluid that passed all the usual tests.

While we’ve seen a few attempts to make liquid nitrogen before, this might be the first time we’ve seen anyone make liquid oxygen. Hats off to [Shahriar] for the effort.

 

 

Better Bearings Take the Wobble Out of Premium Scroll Wheel

9 Abril 2025 at 08:00

Sitting in front of a computer all day isn’t exactly what the firmware between our ears was tuned to do. We’re supposed to be hunting and gathering, not hunting and pecking. So anything that makes the computing experience a little more pleasurable is probably worth the effort, and this premium wireless scroll wheel certainly seems to fit that bill.

If this input device seems familiar, that’s because we featured [Engineer Bo]’s first take on this back at the end of 2024. That version took a lot of work to get right, and while it delivered high-resolution scrolling with a premium look and feel, [Bo] just wasn’t quite satisfied with the results. There were also a few minor quibbles, such as making the power switch a little more user-friendly and optimizing battery life, but the main problem was the one that we admit would have driven us crazy, too: the wobbling scroll wheel.

[Bo]’s first approach to the wobble problem was to fit a larger diameter bearing under the scroll wheel. That worked, but at the expense of eliminating the satisfying fidget-spinner action of the original — not acceptable. Different bearings yielded the same result until [Bo] hit on the perfect solution: a large-diameter ceramic bearing that eliminated the wobble while delivering the tactile flywheel experience.

The larger bearing left more room inside for the redesigned PCB and a lower-profile, machined aluminum wheel. [Bo] also had a polycarbonate wheel made, which looks great as is but would really be cool with internal LEDs — at the cost of battery life, of course. He’s also got plans for a wheel machined from wood, which we’ll eagerly await.

Dozens of Solenoids Turn Vintage Typewriter into a Printer

9 Abril 2025 at 02:00

An electric typewriter is a rare and wonderful thrift store find, and even better if it still works. Unfortunately, there’s not as much use for these electromechanical beauties, so if you find one, why not follow [Konstantin Schauwecker]’s lead and turn it into a printer?

The portable typewriter [Konstantin] found, a Silver Reed 2200 CR, looks like a model from the early 1980s, just before PCs and word processing software would sound the death knell for typewriters. This machine has short-throw mechanical keys, meaning that a physical press of each key would be needed rather than electrically shorting contacts. Cue the order for 50 low-voltage solenoids, which are arranged in rows using 3D printed holders and aluminum brackets, which serve as heat sinks to keep the coils cool. The solenoids are organized into a matrix with MOSFET drivers for the rows and columns, with snubber diodes to prevent voltage spikes across the coils, of course. A Raspberry Pi takes care of translating an input PDF file into text and sending the right combination of GPIO signals to press each key.

The action of the space bar is a little unreliable, so page formatting can be a bit off, but other than that, the results are pretty good. [Konstantin] even managed to hook the printer up to his typewriter keyboard, which is pretty cool, too.

Simple Antenna Makes for Better ESP32-C3 WiFi

8 Abril 2025 at 02:00

We’ve seen tons of projects lately using the ESP32-C3, and for good reason. The microcontroller has a lot to offer, and the current crop of tiny dev boards sporting it make adding a lot of compute power to even the smallest projects dead easy. Not so nice, though, is the poor WiFi performance of some of these boards, which [Peter Neufeld] addresses with this quick and easy antenna.

There are currently a lot of variations of the ESP32-C3 out there, sometimes available for a buck a piece from the usual suspects. Designs vary, but a lot of them seem to sport a CA-C03 ceramic chip antenna at one end of the board to save space. Unfortunately, the lack of free space around the antenna makes for poor RF performance. [Peter]’s solution is a simple antenna made from a 31-mm length of silver wire. One end of the wire is formed into a loop by wrapping it around a 5-mm drill bit and bending it perpendicular to the remaining tail. The loop is then opened up a bit so it can bridge the length of the ceramic chip antenna and then soldered across it. That’s all it takes to vastly improve performance as measured by [Peter]’s custom RSSI logger — anywhere from 6 to 10 dBm better. You don’t even need to remove the OEM antenna.

The video below, by [Circuit Helper], picks up on [Peter]’s work and puts several antenna variants to further testing. He gets similarly dramatic results, with 20 dBm improvement in some cases. He does note that the size of the antenna can be a detriment to a project that needs a really compact MCU and tries coiling up the antenna, with limited success. He also did a little testing to come up with an optimal length of 34 mm for the main element of the antenna.

There seems to be a lot of room for experimentation here. We wonder how mounting the antenna with the loop perpendicular to the board and the main element sticking out lengthwise would work. We’d love to hear about your experiments, so make sure to ping us with your findings.

Buyer Beware: Cheap Power Strips Hold Hidden Horrors

7 Abril 2025 at 20:00

We’ve got a love-hate relationship with discount tool outlet Harbor Freight: we hate that we love it so much. Apparently, [James Clough] is of much the same opinion, at least now that he’s looked into the quality of their outlet strips and found it somewhat wanting.

The outlet strips in question are Harbor Freight’s four-foot-long, twelve-outlet strips, three of which are visible from where this is being written. [James] has a bunch of them too, but when he noticed an intermittent ground connection while using an outlet tester, he channeled his inner [Big Clive] and tore one of the $20 strips to bits. The problem appears to be poor quality of the contacts within each outlet, which don’t have enough spring pre-load to maintain connection with the ground pin on the plug when it’s wiggled around. Actually, the contacts for the hot and neutral don’t look all that trustworthy either, and the wiring between the outlets is pretty sketchy too. The video below shows the horrors within.

What’s to be done about this state of affairs? That’s up to you, of course. We performed the same test on all our outlets and the ground connections all seemed solid. So maybe [James] just got a bad batch, but he’s still in the market for better-quality strips. That’s going to cost him, though, since similar strips with better outlets are about four times the price of the Harbor Freight units. We did find a similar strip at Home Depot for about twice the price of the HF units, but we can’t vouch for the quality. As always, caveat emptor.

Thanks to [cliff claven] for the tip.

Hackaday Links: March 30, 2025

30 Marzo 2025 at 23:00
Hackaday Links Column Banner

The hits just keep coming for the International Space Station (ISS), literally in the case of a resupply mission scheduled for June that is now scrubbed thanks to a heavy equipment incident that damaged the cargo spacecraft. The shipping container for the Cygnus automated cargo ship NG-22 apparently picked up some damage in transit from Northrop Grumman’s Redondo Beach plant in Los Angeles to Florida. Engineers inspected the Cygnus and found that whatever had damaged the container had also damaged the spacecraft, leading to the June mission’s scrub.

Mission controllers are hopeful that NG-22 can be patched up enough for a future resupply mission, but that doesn’t help the ISS right now, which is said to be running low on consumables. To fix that, the next scheduled resupply mission, a SpaceX Cargo Dragon slated for an April launch, will be modified to include more food and consumables for the ISS crew. That’s great, but it might raise another problem: garbage. Unlike the reusable Cargo Dragons, the Cygnus cargo modules are expendable, which makes them a great way to dispose of the trash produced by the ISS crew since everything just burns up on reentry. The earliest a Cygnus is scheduled to dock at the ISS again is sometime in this autumn, meaning it might be a long, stinky summer for the crew.

By now you’ve probably heard the news that genetic testing company 23andMe has filed for bankruptcy. The company spent years hawking their spit-in-a-tube testing kits, which after DNA sequence analysis returned a report revealing all your genetic secrets. This led to a lot of DNA surprises, like finding a whole mess of half-siblings, learning that your kid isn’t really related to you, and even catching an alleged murderer. But now that a bankruptcy judge has given permission for the company to sell that treasure trove of genetic data to the highest bidder, there’s a mad rush of 23andMe customers to delete their data. It’s supposed to be as easy as signing into your account and clicking a few buttons to delete your data permanently, with the option to have any preserved samples destroyed as well. Color us skeptical, though, that the company would willingly allow its single most valuable asset to be drained. Indeed, there were reports of the 23andMe website crashing on Monday, probably simply because of the rush of deletion requests, but then again, maybe not.

It may not have been 121 gigawatts-worth, but the tiny sample of plutonium that a hapless Sydney “science nerd” procured may be enough to earn him some jail time. Emmanuel Lidden, 24, pleaded guilty to violations of Australia’s nuclear proliferation laws after ordering a small sample of the metal from a US supplier, as part of his laudable bid to collect a sample of every element in the periodic table. Shipping plutonium to Australia is apparently a big no-no, but not so much that the border force officials who initially seized the shipment didn’t return some of the material to Lidden. Someone must have realized they made a mistake, judging by the outsized response to re-seize the material, which included shutting down the street where his parents live and a lot of people milling about in hazmat suits. We Googled around very briefly for plutonium samples for sale, which is just another in a long list of searches since joining Hackaday that no doubt lands us on a list, and found this small chunk of trinitite encased in an acrylic cube for $100. We really hope this isn’t what the Australian authorities got so exercised about that Lidden now faces ten years in prison. That would be really embarrassing.

And finally, we couldn’t begin to tote up the many happy hours of our youth spent building plastic models. New model day was always the best day, and although it’s been a while since we’ve indulged, we’d really get a kick out of building models of some of the cars we had an emotional connection to, like the 1972 Volkswagen Beetle that took us on many high school adventures, or our beloved 1986 Toyota 4×4 pickup with the amazing 22R engine. Sadly, those always seemed to be vehicles that wouldn’t appeal to a broad enough market to make it worth a model company’s while to mass-produce. But if you’re lucky, the car of your dreams might just be available as a download thanks to the work of Andrey Bezrodny, who has created quite a collection of 3D models of off-beat and quirky vehicles. Most of the files are pretty reasonably priced considering the work that obviously went into them, and all you have to do is download the files and print them up. It’s not quite the same experience as taking the shrink-wrap off a Revell or Monogram box and freeing the plastic parts from they’re trees to glue them together, but it still looks like a lot of fun.

Chip Glitching 101 with [Hash]

30 Marzo 2025 at 08:00

Ever want to get into reverse engineering but don’t know where to start? You’re in luck — [Hash] just dropped a case study in chip glitching that should get you off on the right foot.

The object of this reverse engineering effort in the video below is a Microchip SAM4C32C, removed from one of the many smart electrical meters [Hash] loves to tear into. This microcontroller was supposed to be locked to prevent anyone from sniffing around in the code, but after soldering the chip to a target board and plugging it into a Chip Whisperer, [Hash] was able to find some odd-looking traces on the oscilloscope. Of particular interest was an unusual pattern on the scope while resetting the chip, which led him to an AI-assisted search for potential vulnerabilities. This allowed him to narrow down the target time for a power glitch, and in only a few seconds, the chip was forced to bypass its security bit and drop into its boot loader. With the keys to the kingdom, [Hash] was able to read the firmware and find all sorts of interesting tidbits.

Obviously, chip glitching isn’t always as easy as this, and even when a manufacturer leaves a vector like this in the chip, exploiting it does take some experience and finesse. But, if you’re going to get started glitching, it makes sense to start with the low-hanging fruit, and having [Hash] along for the ride doesn’t hurt either.

Recreating the Analog Beauty of a Vintage Tektronix Oscillator

29 Marzo 2025 at 11:00

Tektronix must have been quite a place to work back in the 1980s. The company offered a bewildering selection of test equipment, and while the digital age was creeping in, much of their gear was still firmly rooted in the analog world. And some of the engineering tricks the Tek wizards pulled off are still the stuff of legend.

One such gem of analog design was the SG505, an ultra-low-distortion oscillator module that [Paul] is trying to replicate with modern parts. That’s a tall order since not only did the original specs on this oscillator call for less than 0.0008% total harmonic distortion over a frequency range of 20 Hz to 20 kHz, but a lot of the components it used are no longer manufactured. Tek also tended to use a lot of custom parts, especially mechanical ones like the barrel switch used to select attenuation levels in the SG505, leaving [Paul] no choice but to engineer his way around them.

So far, [Paul] has managed to track down most of the critical components or source suitable substitutes. One major win was locating the original J-FET Tek used in the oscillator’s AGC circuit. One part that’s proven more elusive is the potentiometer that Tek used to adjust the frequency; who knew that finding a dual-gang precision wirewound 10k single-turn pot with no physical stop would be such a chore?

[Paul] still seems to be very much in the planning stages of this project yet, and that’s probably for the best since projects such as these live and die on proper planning. We’re keen to see how this develops, and we’re very much looking forward to seeing the FFT results. We also imagine he’ll be busting out his custom curve tracer at some point in the build, too.

Chase Light SAO Shouldn’t Have Used a 555, and Didn’t

27 Marzo 2025 at 11:00

Around these parts, projects needlessly using a microcontroller where a simpler design would do are often derided with the catch-all “Should have used a 555,” even if the venerable timer chip wouldn’t have been the ideal solution. But the sentiment stands that a solution more complicated than it needs to be is probably one that needs rethinking, as this completely mechanical chaser light badge Simple Add-On (SAO) aptly demonstrates.

Rather than choosing any number of circuits to turn a strip of discrete lights on and off, [Johannes] took inspiration for his chaser lights from factory automation mechanisms that move parts between levels on steps that move out of phase with each other, similar to the marble-raising mechanism used in [Wintergatan]’s Marble Machine X.

Two thin plates with notches around the edge are sandwiched together inside the 3D printed case of the SAO, between the face and the light source. A small motor and a series of gears rotate the two masks 180° out of phase with each other, which creates the illusion that the light is moving.

It’s pretty convincing; when we first saw the video below, we were sure it was a row of tiny LEDs around the edge of the badge.

Hats off to [Johannes] for coming up with such a clever mechanism and getting it working just in time for Hackaday Europe. If you need to catch up on the talks, we’ve got a playlist ready for you.

3D-Printed Scanner Automates Deck Management for Trading Card Gamers

26 Marzo 2025 at 20:00

Those who indulge in trading card games know that building the best deck is the key to victory. What exactly that entails is a mystery to us muggles, but keeping track of your cards is a vital part of the process, one that this DIY card scanner (original German; English translation) seeks to automate.

At its heart, [Fraens]’ card scanner is all about paper handling, which is always an engineering task fraught with peril. Cards like those for Magic: The Gathering and other TCGs are meant to be handled by human hands, and automating the task of flipping through them presents some challenges. [Fraens] uses a pair of motorized 3D-printed rollers with O-rings to form a conveyor belt that can pull one card at a time off the bottom of a deck. An adjustable retaining roller made from the most adorable linear bearing we’ve ever seen ensures that only one card at a time is pulled from the hopper onto an imaging platen. An adjustable mount holds a smartphone to take a picture of the card, which is fed into an app that extracts all the details and categorizes the cards in the deck.

Aside from the card handling mechanism, there are some pretty slick details to this build. The first is that [Fraens] noticed that the glossy finish on some cards interfered with scanning, leading him to add a diffused LED ringlight to the rig. If an image isn’t scannable, the light goes through a process of dimming and switching colors until a good scan is achieved. Also, to avoid the need to modify the existing TCG deck management app, [Fraens] added a microphone to the control side of the scanner that listens for the sounds the app makes when it scans cards. And if Magic isn’t your thing, the basic mechanism could easily be modified to scan everything from business cards to old family photos.

Physical Key Copying Starts With a Flipper Zero

26 Marzo 2025 at 02:00

A moment’s inattention is all it takes to gather the information needed to make a physical copy of a key. It’s not necessarily an easy process, though, so if pen testing is your game, something like this Flipper Zero key copying toolchain can make the process quicker and easier when the opportunity presents itself.

Of course, we’re not advocating for any illegal here; this is just another tool for your lock-sports bag of tricks. And yes, there are plenty of other ways to accomplish this, but using a Flipper Zero to attack a strictly mechanical lock is kind of neat. The toolchain posted by [No-Lock216] starts with an app called KeyCopier, which draws a virtual key blank on the Flipper Zero screen. The app allows you to move the baseline for each pin to the proper depth, quickly recording the bitting for the key. Later, the bitting can be entered into an online app called keygen which, along with information on the brand of lock and its warding, can produce an STL file suitable for downloading and printing.

Again, there are a ton of ways to make a copy of a key if you have physical access to it, and the comments of the original Reddit post were filled with suggestions amusingly missing the entire point of this. Yes, you can get a key cut at any hardware store for a buck or two that will obviously last a lot longer than a 3D-printed copy. But if you only have a few seconds to gather the data from the key, an app like KeyCopier could be really convenient. Personally, we’d find a smartphone app handier, but if you’ve got a Flipper, why not leverage it?

Thanks to [JohnU] for the tip.

Hackaday Links: March 23, 2025

23 Marzo 2025 at 23:00
Hackaday Links Column Banner

What a long, strange trip it’s been for NASA astronauts Suni Williams and Bruce Wilmore, who finally completed their eight-day jaunt to space after 289 days. The duo returned to Earth from the ISS on Tuesday along with two other returning astronauts in a picture-perfect splashdown, complete with a dolphin-welcoming committee. For the benefit of those living under rocks these past nine months, Williams and Wilmore slipped the surly bonds way back in June on the first crewed test flight of the Boeing Starliner, bound for a short stay on the ISS before a planned return in the same spacecraft. Alas, all did not go to plan as their ride developed some mechanical difficulties on the way upstairs, and so rather than risk their lives on a return in a questionable capsule, NASA had them cool their heels for a couple of months while Starliner headed home without them.

There’s been a lot of talk about how Butch and Suni were “stranded,” but that doesn’t seem fair to us. Sure, their stay on the ISS was unplanned, or at least it wasn’t Plan A; we’re sure this is always a contingency NASA allows for when planning missions. Also unfortunate is the fact that they didn’t get paid overtime for the stay, not that you’d expect they would. But on the other hand, if you’re going to get stuck on a work trip, it might as well be at the world’s most exclusive and expensive resort.

Speaking of space, while it’s statistically unlikely that anyone reading this will ever get there, you can still get a little taste of what space travel is like if you’re willing to give up ten days of your life to lie in a waterbed. What’s more, the European Space Agency will pay you 5,000 euros to do it. The experiment is part of the ESA’s Vivaldi III campaign, an exploration of the effects of extended spaceflight on the human body. The “waterbed” thing is a little misleading, though; since the setup is designed to simulate the posture the body takes in microgravity, they use a tank of water (heated, we hope) with a waterproof cover to submerge volunteers up to their torso. This neutral body posture looks pretty comfortable if you’re sleeping in space, but we tend to think it’d get annoying pretty quickly down here. Especially for potty breaks, which aren’t done astronaut-style but rather by being transferred to a trolley which lets you do your business without breaking from the neutral posture. Still, 5,000 euros is 5,000 euros.

Bad news for the meme-making community, as it appears AI might be coming for you, too. A recent study found that LLMs like ChatGPT can meme better than humans, at least under certain conditions. To come to that conclusion, researchers used some pretty dank meme templates and pitted humans against ChatGPT-4o to come up with meme-worthy captions. They also had a different group of humans collaborate with the LLM to come up with meme captions, which for practical purposes probably means the humans let the chatbot do the heavy lifting and just filtered out the real stinkers. When they showed the memes to crowdsourced participants to rate them on humor, creativity, and shareability, they found that the LLM consistently produced memes that scored higher across all three categories. This makes sense when you think about it; the whole job of an LLM is to look at a bunch of words and come up with a consensus on what the next word should be. Happily, the funniest memes were written by humans, and the human-LLM collaborations were judged more creative and shareable. So we’ve got that going for us, which is good.

We noted the passing of quite a few surplus electronics shops in this space before, and the closing of each of them, understandable as they may, marks the end of an era. But we recently learned about one surplus outfit that’s still going strong. Best Electronics, which specializes in Atari retrocomputing, has been going strong for over 40 years, a neat trick when Atari itself went bankrupt over 30 years ago. While they appear to have a lot of new old stock bits and bobs — they’re said to have acquired “thousands and thousands” of pallets of Atari goods from their Sunnyvale warehouse when the company folded — they also claim to spend a lot of money on engineering development. Their online presence is delightfully Web 1.0, making it pretty hard to sort through, but we think that development is mainly upgraded PCBs for things like joysticks and keyboards. Whatever they’re doing, they should just keep on doing it.

And finally, have you ever seen a knitted breadboard? Now you have, and while it’s of no practical value, we still love it. Alanna Okun made it for the ITP Stupid Hackathon at NYU back in February. There aren’t any instructions or build docs, so it’s not clear how it works, but from the photos we’d guess there’s either conductive yarn or solid copper wire knitted into the pattern to serve as bus bars.

Cheap Endoscopic Camera Helps Automate Pressure Advance Calibration

21 Marzo 2025 at 08:00

The difference between 3D printing and good 3D printing comes down to attention to detail. There are so many settings and so many variables, each of which seems to impact the other to a degree that can make setting things up a maddening process. That makes anything that simplifies the process, such as this computer vision pressure advance attachment, a welcome addition to the printing toolchain.

If you haven’t run into the term “pressure advance” for FDM printing before, fear not; it’s pretty intuitive. It’s just a way to compensate for the elasticity of the molten plastic column in the extruder, which can cause variations in the amount of material deposited when the print head acceleration changes, such as at corners or when starting a new layer.

To automate his pressure advance calibration process, [Marius Wachtler] attached one of those dirt-cheap endoscope cameras to the print head of his modified Ender 3, pointing straight down and square with the bed. A test grid is printed in a corner of the bed, with each arm printed using a slightly different pressure advance setting. The camera takes a photo of the pattern, which is processed by computer vision to remove the background and measure the thickness of each line. The line with the least variation wins, and the pressure advance setting used to print that line is used for the rest of the print — no blubs, no blebs.

We’ve seen other pressure-advanced calibrators before, but we like this one because it seems so cheap and easy to put together. True, it does mean sending images off to the cloud for analysis, but that seems a small price to pay for the convenience. And [Marius] is hopeful that he’ll be able to run the model locally at some point; we’re looking forward to that.

Chemistry Meets Mechatronics in This Engaging Art Piece

20 Marzo 2025 at 11:00

There’s a classic grade school science experiment that involves extracting juice from red cabbage leaves and using it as a pH indicator. It relies on anthocyanins, pigmented compounds that give the cabbage its vibrant color but can change depending on the acidity of the environment they’re in, from pink in acidic conditions to green at higher pH. And anthocyanins are exactly what power this unusual kinetic art piece.

Even before it goes into action, [Nathalie Gebert]’s Anthofluid is pretty cool to look at. The “canvas” of the piece is a thin chamber formed by plexiglass sheets, one of which is perforated by an array of electrodes. A quartet of peristaltic pumps fills the chamber with a solution of red cabbage juice from a large reservoir, itself a mesmerizing process as the purple fluid meanders between the walls of the chamber and snakes around and between the electrodes. Once the chamber is full, an X-Y gantry behind the rear wall moves to a random set of electrodes, deploying a pair of conductors to complete the circuit. When a current is applied, tendrils of green and red appear, not by a pH change but rather by the oxidation and reduction reactions occurring at the positive and negative electrodes. The colors gently waft up through the pale purple solution before fading away into nothingness. Check out the video below for the very cool results.

We find Anthofluid terribly creative, especially in the use of such an unusual medium as red cabbage juice. We also appreciate the collision of chemistry, electricity, and mechatronics to make a piece of art that’s so kinetic but also so relaxing at the same time. It’s the same feeling that [Nathalie]’s previous art piece gave us as it created images on screens of moving thread.

World’s Smallest Blinky, Now Even Smaller

20 Marzo 2025 at 05:00

Here at Hackaday, it’s a pretty safe bet that putting “World’s smallest” in the title of an article will instantly attract comments claiming that someone else built a far smaller version of the same thing. But that’s OK, because if there’s something smaller than this nearly microscopic LED blinky build, we definitely want to know about it.

The reason behind [Mike Roller]’s build is simple: he wanted to build something smaller than the previous smallest blinky. The 3.2-mm x 2.5-mm footprint of that effort is a tough act to follow, but technology has advanced somewhat in the last seven years, and [Mike] took advantage of that by basing his design on an ATtiny20 microcontroller in a WLCSP package and an 0201 LED, along with a current-limiting resistor and a decoupling capacitor. Powering the project is a 220-μF tantalum capacitor, which at a relatively whopping 3.2 mm x 1.6 mm determines the size of the PCB, which [Mike] insisted on using.

Assembling the project was challenging, to say the least. [Mike] originally tried a laboratory hot plate to reflow the board, but when the magnetic stirrer played havoc with the parts, he switched to a hot-air rework station with a very low airflow. Programming the microcontroller almost seemed like it was more of a challenge; when the pogo pins he was planning to use proved too large for the job he tacked leads made from 38-gauge magnet wire to the board with the aid of a micro hot air tool.

After building version one, [Mike] realized that even smaller components were available, so there’s now a 2.4 mm x 1.5 mm version using an 01005 LED. We suspect there’ll be a version 3.0 soon, though — he mentions that the new TI ultra-small microcontrollers weren’t available yet when he pulled this off, and no doubt he’ll want to take a stab at this again.

❌
❌