Vista Normal

Hay nuevos artículos disponibles. Pincha para refrescar la página.
AnteayerHackaday

Can We Ever Achieve Fusion Power?

Por: Jenny List
29 Junio 2024 at 08:00

Fusion power has long held the promise of delivering near-endless energy without as many unfortunate side effects as nuclear fission. But despite huge investment and some fascinating science, the old adage about practical power generation being 20 years away seems just as true as ever. But is that really the case? [Brian Potter] has written a review article for Construction Physics, which takes us through the decades of fusion research.

For a start, it’s fascinating to learn about the many historical fusion process, the magnetic pinch, the stelarator, and finally the basis of many modern reactors, the tokamak. He demonstrates that we’ve made an impressive amount of progress, but at the same time warns against misleading comparisons. There’s a graph comparing fusion progress with Moore’s Law that he debunks, but he ends on a positive note. Who knows, we might not need a Mr. Fusion to arrive from the future after all!

Fusion reactors are surprisingly easy to make, assuming you don’t mind putting far more energy in than you’d ever receive in return. We’ve featured more than one Farnsworth fusor over the years.

8MM Digitization For Anyone

Por: Jenny List
29 Junio 2024 at 02:00

There’s a pleasing retro analogue experience to shooting Super 8 film, giving as it does the feel of a 1970s home movie to your work. But once you’ve had the film developed, there’s a need for a projector to enjoy the result. Far better to digitize it for a more modern viewing and editing experience. [Elbert] has made a digitizer for 8mm film which takes the best approach, snapping each frame individually to be joined together in a video file as a whole.

The frame of the device is 3D printed, but some parts of a film transport must be higher quality than a printed part can deliver. These, in particular the sprockets, are salvaged from a film viewer, and the movement is powered by a set of stepper motors. The steppers are controlled by an ESP32, and the optics are provided by a USB microscope. All this is hooked up to a PC which grabs each image, and finally stitches them all together using ffmpeg.

As anyone who has dabbled in 8mm film will tell you, there is a lot in the quality of a film digitizer, and it’s often worth paying for a professional job from someone aimed at the film-making world rather than you local photographic print booth. It would be interesting to take a look at this device, and see whether its quality is worth pursuing. After all, some of us have been known to dabble in 8mm film.

LEGO Bricks: Now Out Of This World

Por: Jenny List
27 Junio 2024 at 11:00

Now the eyes of space explorers are turned once more towards the Moon, there are a whole host of new engineering challenges facing engineers working on lunar missions. One such challenge relates to how any proposed Moon base might be built, and as European Space Agency (ESA) researchers turn their mind to the problem they’ve taken a uniquely European approach. They’ve made some LEGO bricks.

Sadly lunar regolith is in short supply in Europe at the moment, so as a stand-in they’ve ground up a meteorite, mixed the powder with a polymer, and 3D printed their bricks. The LEGO write-up is a little long on frothy writing style and a little short on the science, but it seems that they clutch in exactly the same way as the official bricks from Billund, and can be assembled just as you would a normal set of bricks.

It’s with some regret that we have to concede that Europe’s off-planet outpost won’t be crewed by LEGO people in a base made from LEGO bricks, but we applaud them for doing this as a practical test given the limited supply of starter material. LEGO themselves have snagged some of them to display in a range of their flagship stores, so we hot-footed it down to London to catch some pictures. What we found is a single brick in a glass case, sadly looking very like any other 3D printed brick in a shiny grey medium. It’s probably the most expensive brick in the world though, so we doubt they’ll be available to buy any time soon.

If you’re hungry for more of all things LEGO, we can do no better than suggest a trip to the mother lode, in Billund, Denmark.

The SpinMeister, For a Perfect Pizza Every Time!

Por: Jenny List
25 Junio 2024 at 11:00

If you don’t happen to have a traditional stone-floored domed clay oven on hand, it can be surprisingly challenging to make a pizza that’s truly excellent. Your domestic oven does a reasonable job, but doesn’t really get hot enough. Even a specialist pizza oven such as [Yvo de Haas]’ Ooni doesn’t quite do the best possible, so he’s upgraded it with the SpinMeister — a system for precise timing of the heat, and controlled rotation of the cooking stone for an even result.

The spinning part is handled by a stepper motor, driving a hex shaft attached to the bottom of the stone through a chuck. The rotating bearing itself is from an aftermarket stone rotator kit. The controller meanwhile is a smart 3D printed unit with a vacuum-fluorescent display module, powered from an Arduino Nano. There’s a motor controller to handle driving the stepper, and an MP3 module for audible warning. It’s all powered from a USB-C powerbank, for true portability. He’s produced a video showing it cooking a rather tasty-looking flatbread, which we’ve placed below. Now for some unaccountable reason, we want pizza.

If you recognize [Yvo]’s name, then perhaps it’s because he’s appeared on these pages a few times. Whether it’s a tentacle robot or something genuinely different in 3D printing, his work never ceases to be interesting.

Thumb Nuts For Not a Lot

Por: Jenny List
22 Junio 2024 at 11:00

Sometimes it’s the most straightforward of hacks which are also the most satisfying, and so it is that we’d like to draw your attention to [mikeandmertle]’s PVC thumb nuts. They provide a cheap an easy to make way to create thumb-tightenable nuts for your projects.

Starting with a PVC sheet, a series of discs can be cut from it with a hole saw. The hole in the centre of the disc is chosen such that it’s a bit smaller than the required nut, so that it can be pressed into the space with a bolt and a washer. Then a second PVC disc is glued over one side of the first before being sanded to a regular shape, resulting in a captive nut at the centre of a finger-sized and easily turnable handle.

We like this project, and we think that quite a few of you will too. We wonder how much torque it will take, but we’re guessing that a threaded insert could easily be substituted for the nut in more demanding applications. And of course, for more demanding applications you could always try knurling.

Probably The Cheapest Mac Emulation Hardware

Por: Jenny List
20 Junio 2024 at 11:00

There are many ways to build your own Macintosh clone, and while the very latest models remain a little inaccessible, there are plenty of Intel-based so-called “Hackintoshes” which deliver an almost up-to-date experience. But the Mac has been around for a very long time now, and its earliest incarnation only has 128k of RAM and a 68000 processor. What can emulate one of those? Along comes [Matt Evans], with a working Mac 128k emulated on a Raspberry Pi Pico. Such is the power of a modern microcontroller that an RP2040 can now be a Mac!

The granddaddy of all Macs might have been a computer to lust after four decades ago, but the reality was that even at the time the demands of a GUI quickly made it under-powered. The RP2040 has plenty of processing power compared to the 68000 and over twice the Mac’s memory, so it seemed as though emulating the one with the other might be possible. This proved to be the case, using the Musashi 68000 interpreter and a self-built emulator which has been spun into a project of its own called umac. With monochrome VGA and USB for keyboard and mouse, there’s MacPaint on a small LCD screen looking a lot like the real thing.

If you want a 1980s Mac for anything without the joy of reviving original hardware, this represents an extremely cheap way to achieve it. If it can be compiled for microcontrollers with more available memory we could see it would even make for a more useful Mac, though your Mac mileage may vary.

Of course, this isn’t the only take on an early Mac we’ve brought you.

SIPing a Vintage Phone

Por: Jenny List
17 Junio 2024 at 02:00

Something that’s a bit of fun at hacker camps such as the recent EMF Camp is to bring along a wired phone and hook it up to the on-camp copper network. It’s a number on the camp network, but pleasingly retro. How about doing the same thing at home? Easy enough if you still have a wired landline, but those are now fast becoming a rarity. Help is at hand though courtesy of [Remy], who’s written about his experiences using a 1960s Dutch phone as a SIP device.

The T65 was the standard Dutch home phone of the 1960s and 1970s, and its curvy grey plastic shape is still not difficult to find in that country.  The guide covers using various different VoIP boxes between such an old machine and the Internet, but there’s more of interest to be found in it. In particular the use of an inline pulse-to-tone converter, either the wonderfully-named DialGizmo, or perhaps closer to our world, a PIC-based kit.

So if you can lay your hands on a VoIP box it’s completely possible to use an aged phone here in 2024. Remember though, a SIP account isn’t the only way to do it.

J. de Kat Angelino, CC BY 3.0.

A LEGO CNC Pixel Art Generator

Por: Jenny List
15 Junio 2024 at 02:00

If you are ever lucky enough to make the trip to Bilund in Denmark, home of LEGO, you can have your portrait taken and rendered in the plastic bricks as pixel art. Having seen that on our travels we were especially interested to watch [Creative Mindstorms]’ video doing something very similar using an entirely LEGO-built machine but taking the images from an AI image generator.

The basic operation of the machine is akin to that of a pick-and-place machine, and despite the relatively large size of a small LEGO square it still has to place at a surprisingly high resolution. This it achieves through the use of a LEGO lead screw for the Y axis and a rack and pinon for the X axis, each driven by a single motor.

The Z axis in this machine simply has to pick up and release a piece, something solved with a little ingenuity, while the magazine of “pixels” was adapted with lower friction from another maker’s design. The software is all written in Python, and takes input from end stop switches to position the machine.

We like this build, and we can appreciate the quantity of work that must have gone into it. If you’re a LEGO fan and can manage the trip to Bilund, there’s plenty of other LEGO goodness to see there.

Comparing Those Ten Cent Microcontrollers

Por: Jenny List
10 Junio 2024 at 11:00

If you follow the world of microcontrollers, then you’ll probably be familiar with the most recent crop of ten cent parts. They bring power and features previously the preserve of much more expensive chips into the super-budget arena, and they’re appearing in plenty of projects on these pages.

If you’re not familiar with them it can seem daunting to decide which one to use, so to help you [Zach of All Trades] is comparing two of the more common ones. The CH32V003 with a RISC-V core and the PY32F002 with an ARM Cortex M0+ core are both pretty similar on paper, but which should you use?

The video below gives a run-down of each part along with some demonstrations before making its conclusions. The ARM-based part isn’t as quick as the RISC-V one but has a slight edge on peripherals, while the support is where a potential winner emerges in the shape of the CH32. That should be the last word, but for that the PY32 has the distance advantage over its rival of ready availability.

So this look at two families of cheap microcontrollers reveals the pros and cons of each, but in reality it provides an introduction to two sets of powerful chips for pennies.

As we’ve observed before, there are more chips to be found in this market.

A Wireless Monitor Without Breaking The Bank

Por: Jenny List
9 Junio 2024 at 14:00

The quality of available video production equipment has increased hugely as digital video and then high-definition equipment have entered the market. But there are still some components which are expensive, one of which is a decent quality HD wireless monitor. Along comes [FuzzyLogic] with a solution, in the form of an external monitor for a laptop, driven by a wireless HDMI extender.

In one sense this project involves plugging in a series of components and simply using them for their intended purpose, however it’s more than that in that it involves some rather useful 3D printed parts to make a truly portable wireless monitor, as well as saving the rest of us the gamble of buying wireless HDMI extender without knowing whether it would deliver.

He initially tried an HDMI-to-USB dongle and a streaming Raspberry Pi, however the latency was far too high to be useful. The extender does have a small delay, but not so bad as to be unusable. The whole including the monitor can be powered from a large USB power bank, answering one of our questions. All the files can be downloaded from Printables should you wish to follow the same path, and meanwhile there’s a video with the details below the break.

Tarzan, Lost Since 1983, Swings Back Onto The Atari 2600

Por: Jenny List
6 Junio 2024 at 11:00

Computer gaming history is littered with tales of fabled lost hardware and software. Some of them are very famous such as the E.T. cartridges buried in a desert landfill or the few prototype SNES/CD-ROM hybrid that Nintendo was developing with Sony before the introduction of the PlayStation, but others have faded somewhat into obscurity. Among these is Tarzan for the Atari 2600, a game which was never released due to the 1983 console crash, and which the [Video Game History Foundation] have a report on its rediscovery and preservation.

The game was to be published by Coleco for their ColecoVision console as well as the 2600. The ColecoVision version was released and was apparently even fairly well reviewed, but the Atari port was canceled and its very existence eventually faded into obscurity.

Then a manual surfaced in 2011, and in 2022, a pair of prototype cartridges were sold off by a former Coleco employee. The write-up goes into great detail on the video game production and provides a fascinating snapshot of the turbulence in the industry at the time. But what really caught our eye were the two cartridges themselves. We have an obvious prototype board and a more professional looking example, both with a ROM and set of TTL chips used for bank switching. Interestingly the chips are different on each board, as well as the variety of manufacturers and date codes pointing to a hand-assembled board.

While the game seems quaint to modern eyes, it’s definitely pushing the boundaries of the console as much as any modern AAA game pushes that console under your TV today. If you’re thirsty for more tales of 1980s consumer computing, look no further than our colleague [Bil Herd]’s account of his days at Commodore.

The Pi Pico, An SDR Receiver Front End

Por: Jenny List
6 Junio 2024 at 02:00

Making a software defined radio (SDR) receiver is a relatively straightforward process, given the right radio front end electronics and analogue-to-digital converters. Two separate data streams are generated using clocks at a 90 degree phase shift, and these are passed to the software signal processing for demodulation. But what happens if you lack a pair of radio front ends and a suitable clock generator? Along comes [Mordae] with an SDR using only the hardware on a Raspberry Pi Pico. The result is a fascinating piece of lateral thinking, extracting something from the hardware that it was never designed to do.

The onboard RP2040 ADC is of course far too slow for the task, so instead an input is used, with a negative feedback arrangement from another GPIO to form a crude 1-bit ADC. A PIO peripheral is then used to perform the quadrature mixing, resulting in the requisite pair of data streams. At this point these are sent over USB to GNU Radio for demodulating, mainly for convenience rather than necessarily because the microcontroller lacks the power.

The result is a working SDR front end, demonstrated pulling in an FM broadcast station. The Pico has to be overclocked to reach that frequency and it’s more than a little noisy, but we’re extremely impressed with how much has been done with so little. Oddly it isn’t the first Pico SDR we’ve seen, but the previous one was a much more conventional and lower-frequency affair for the European Long Wave band.

The Amiga We All Wanted In 1993

Por: Jenny List
5 Junio 2024 at 05:00

To be an Amiga fan during the dying days of the hardware platform back in the mid 1990s was to have a bleak existence indeed. Commodore had squandered what was to us the best computer ever with dismal marketing and a series of machines that were essentially just repackaged versions of the original. Where was a PCI Amiga with fast processors, we cried!

Now, thirty years too late, here’s [Jason Neus] with just the machine we wanted, in the shape of an ATX form factor Amiga motherboard with those all-important PCI slots and USB for keyboard and mouse.

What would have been unthinkable in the ’90s comes courtesy of an original or ECS Amiga chipset for the Amiga functions, and an FPGA and microcontroller for PCI and USB respectively. Meanwhile there’s also a PC floppy drive controller, based on work from [Ian Steadman]. The processor and RAM lives on a daughter card, and both 68040 and 68060 processors are supported.

Here in 2024 of course this is still a 1990s spec board, and misty-eyed speculation about what might have happened aside, it’s unlikely to become your daily driver. But that may not be the point, instead we should evaluate it for what it is. Implementing a PCI bus, even a 1990s one, is not without its challenges, and we’re impressed with the achievement.

If you’re interested in Amiga post-mortems, here’s a slightly different take.

A Human-Sized Strowger Telephone Exchange

Por: Jenny List
4 Junio 2024 at 05:00

A large hacker camp such as EMF 2024 always brings unexpected delights, and one of those could be found in the Null Sector cyberpunk zone: a fully functional Strowger mechanical telephone exchange. Better still, this wasn’t the huge array of racks we’ve come to expect from a mechanical exchange, but a single human-sized unit, maybe on a similar scale to a large refrigerator. [LBPK]’s PAX, or Private Automatic Exchange, is a private telephone network, 1950s style.

It stood at the back of the container, with a row of four telephones in front of it. We particularly liked the angular “Trimphone”, the height of 1960s and 70s chic. You could dial the other phones in the network with a two digit number, and watch the exchange clicking in the background as you did so. Some of the sounds weren’t quite the same as the full-sized equivalents, with the various tones being replaced by vibrating reeds.

This exchange has an interesting history, being built in 1956 by “Automatic Telephone & Electric” for the Midlands Electricity Board, power generator for much of central England, where it served its commercial life. On decommissioning it went to the Ffestiniog narrow gauge railway, in Wales. He was lucky enough to learn of its existence when the Ffestiniog had no further use for it, and snapped it up.

We have to admit, we want one of these, however he makes clear that it’s an unwieldy machine that requires quite some attention so a Hackaday mechanical exchange will have to remain a dream for now.

A Treasure Trove In An English Field

Por: Jenny List
3 Junio 2024 at 14:00

This is being written in a tent in a field in Herefordshire, one of the English counties that borders Wales. It’s the site of Electromagnetic Field, this year’s large European hacker camp, and outside my tent the sky is lit by a laser light show to the sound of electronic music. I’m home.

One of the many fun parts of EMF is its swap table. A gazebo to which you can bring your junk, and from which you can take away other people’s junk. It’s an irresistible destination which turns a casual walk into half an hour pawing through the mess in search of treasure, and along the way it provides an interesting insight into technological progress. What is considered junk in 2024?

Something for everyone

As always, the items on offer range from universal treasures of the I-can’t-believe-they-put that-there variety, through this-is-treasure-to-someone-I’m-sure items, to absolute junk. Some things pass around the camp like legends; I wasn’t there when someone dropped off a box of LED panels for example, but I’ve heard the story relayed in hushed tones several times since, and even seen some of the precious haul. A friend snagged a still-current AMD processor and some Noctua server fans as another example, and I’m told that amazingly someone deposited a Playstation 5. But these are the exceptions, in most cases the junk is either very specific to something, or much more mundane. I saw someone snag an audio effects unit that may or may not work, and there are PC expansion cards and outdated memory modules aplenty.

Finally, there is the absolute junk, which some might even call e-waste but I’ll be a little more charitable about. Mains cables, VGA cables, and outdated computer books. Need to learn about some 1990s web technology? We’ve got you covered.

Perhaps most fascinating is what the junk tells us about the march of technology. There are bins full of VoIP telephones, symptomatic of the move to mobile devices even in the office. As an aside I saw a hackerspace member in his twenties using a phone hooked up to the camp’s copper phone network walk away with the handset clamped to his ear and yank the device off the table; it’s obvious that wired handsets are a thing of the past when adults no longer know how to use them. And someone dropped off an entire digital video distribution system probably from a hotel or similar, a huge box of satellite TV receivers and some very specialised rack modules with 2008 date codes on the chips. We don’t watch linear TV any more, hotel customers want streaming.

Amid all this treasure, what did I walk away with? As I have grown older I have restricted my urge to acquire, so I’m very wary at these places. Even so, there were a few things that caught my eye, a pair of Sennheiser headphones with a damaged cord, a small set of computer speakers — mainly because we don’t have anything in our village on which to play music — and because I couldn’t quite resist it, a microcassette recorder. As each new box arrives the hardware hackers swarm over it like flies though, so who knows what treasures I’ll be tempted by over the rest of the camp.

This Mobile Hackerspace Can Be Yours

Por: Jenny List
3 Junio 2024 at 05:00

Wandering round the field at EMF Camp, our eye was caught by an unusual sight, at least to European eyes. The type of campervan body which sits on the back of a pickup truck is not particularly common on this side of the Atlantic, but there one was, fitted out as a mobile makerspace. If that wasn’t enough, this one is for sale.

Here at Hackaday we’re neither estate agents or in the want-ads business, so we’re unaccustomed to property promotion. We’re still not immune to the attraction of a portable makerspace to take to events though, and this one provides a very practical basis. It started life as what Brits call a Luton van body, a box van, and inside it’s gained a small kitchen, benches and shelves either side, and up in the space over the cab, a double bed. Sadly the laser cutter and 3D printers aren’t included.

If you live in Southern England and you want to be the envy of everyone at your next hacker camp, an email to richjmaynard at gmail dot com with a sensible offer might secure it. We would be first in the queue if we had the space, because what Wrencher scribe wouldn’t want an office like this!

Why Your Old Phone Sounded The Way It Did

Por: Jenny List
2 Junio 2024 at 08:00

The mobile phone may be sweeping away the traditional wired phone, but that doesn’t change the fascinating history and technology of the older device. At [This Museum Is Not Obsolete] they have a fully functional mechanical telephone exchange as one of their exhibits, and they’ve published a video examining the various sounds it’s capable of making.

When a voice synthesiser was the stuff of science fiction, exchange status couldn’t be communicated by anything but a set of different tones. If you’ve ever encountered a mechanical exchange you’ll recognise the harsh-sounding low-frequency dial tone, and the various sets of beeps denoting different call status. These were produced with a set of oscillators being switched in and out by shaped cams, and the bank of these on their exchange is most of the subject of this video. The common ones such as the engaged tone and the dial tone are explained, but also some we’d never heard such as the one signifying the exchange as out of capacity.

We may never own a mechanical exchange of our own, but we’re glad that someone does and is sharing it with us. You can see the video below the break.

 

Hands-On With The Electromagnetic Field 2024 Badge

Por: Jenny List
2 Junio 2024 at 05:00

With every large event in our circles comes a badge, and Electromagnetic Field 2024 is no exception. We’ve told you about the Tildagon when it was announced, it’s a hexagonal badge designed with provision for user-created “Hexpansions”, which can be picked up at future camps. The idea of this badge is to make something with a lifetime beyond the one camp, and we’re interested to have received our badge. It’s unusual for a hacker camp badge in that it costs a little extra rather than just coming with the ticket.

The two PCBs linked by the ribbon cable.
This badge is not particularly difficult to assemble.

In a pair of anti-static bags are the front and rear PCB assemblies, a piece of ribbon cable, a couple of glue pads, and some screws. It could be bought with a battery, however since it’s compatible with the EMF 2016 and 2018 batteries we opted to use one of those instead. Assembly is a case of attaching the cable between the two boards, sticking the battery in place with the glue pads, hooking it up, and screwing the two together.

Looking at the boards, we find the ESP32-S3 microcontroller running the show, and the six sockets for the hexpansions. These last components as well as a set of metal threaded standoffs are evidently not cheap parts, and we’re guessing they’ve had quite some effect on the BOM. The front PCB has a round LCD display module attached, this is of slight interest because it’s done with a row of offset PCB holes rather than a socket. It appears to form a decent connection and hold on to the display adequately.

The badge displaying "Unknown error".
Never judge a badge by day one firmware

Software-wise, there’s the option for an over-the-air update, which we did through the camp network. There are a set of buttons round the points of the hexagon which form the interface, but sadly there’s little in the way of cues as to which does what and it’s a case of figuring it out for yourself. We managed to repeatedly crash our badge when we tried anything, however  it’s not unusual for better working firmware versions to emerge hot on the heels of the badge itself.

We like the hardware of this badge, it’s robust and cleverly designed. We like the idea of a badge for future camps too, and the hexpansions are a pretty neat idea. It’s plain that the firmware version on the first day is a bit flaky, but especially since this is a badge for the long term we’re sure this will get better. All-in-all an eye-catching badge with a future!

CH32V003 Provides Ultra Cheap Speech Recognition

Por: Jenny List
30 Mayo 2024 at 11:00

Speech recognition was once the stuff of science fiction, but it’s now possible with relatively modest hardware. Just how modest, you ask? How about a 10 cent microcontroller?

[Brian Smith] has achieved a very basic form of speech recognition on a CH32V003 RISC-V microcontroller. It may only recognize spoken digits, but that it does so at all on such a modest platform is impressive in itself.

For training purposes it enlists the help of a desktop Linux computer, however the recognition process is purely in the ten cent chip. He goes into much detail about how it achieves this on a system without floating point arithmetic, as well as the other shortcomings of such a limited platform.

We’ve become used to thinking of super-cheap chips as of limited use, but the truth is they’re surprisingly more capable than expected. We’re seeing them starting to appear as subsidiary processors on some badges, so it will be interesting to see them proliferate in more projects now their availability problems have eased. Go on – for ten cents, what do you have to lose?

❌
❌